Using network theory to prioritize management in a desert bighorn sheep metapopulation
详细信息    查看全文
  • 作者:Tyler G. Creech (1)
    Clinton W. Epps (1)
    Ryan J. Monello (2)
    John D. Wehausen (3)
  • 关键词:Colonization ; Connectivity ; Dispersal ; Extinction ; Fragmented population ; Gene flow ; Graph theory ; Habitat patch ; Landscape resistance
  • 刊名:Landscape Ecology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:29
  • 期:4
  • 页码:605-619
  • 全文大小:939 KB
  • 参考文献:1. Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of 鈥榣east-cost鈥?modelling as a functional landscape model. Landsc Urban Plan 64(4):233鈥?47 w window">CrossRef
    2. Albert EM, Fortuna MA, Godoy JA, Bascompte J (2013) Assessing the robustness of networks of spatial genetic variation. Ecol Lett 16:86鈥?3 w window">CrossRef
    3. Bleich VC, Wehausen JD, Ramey RR II, Rechel JL (1996) Metapopulation theory and mountain sheep: implications for conservation. In: McCullough DR (ed) Metapopulations and wildlife conservation. Island Pres, Covelo
    4. Chardon J, Adriaensen F, Matthysen E (2003) Incorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly ( / Pararge aegeria L.). Landscape Ecol 18(6):561鈥?73 w window">CrossRef
    5. Chetkiewicz C-LB, Boyce MS (2009) Use of resource selection functions to identify conservation corridors. J Appl Ecol 46(5):1036鈥?047 w window">CrossRef
    6. Crooks KR, Sanjayan MA (2006) Connectivity conservation. Cambridge University Press, Cambridge w window">CrossRef
    7. Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168(4):486鈥?99 w window">CrossRef
    8. Cushman SA, Chase M, Griffin C (2010) Mapping landscape resistance to identify corridors and barriers for elephant movement in southern Africa. In: Cushman SA, Huettmann F (eds) Spatial complexity, informatics, and wildlife conservation. Springer, Tachikawa, pp 349鈥?67 w window">CrossRef
    9. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269鈥?71 w window">CrossRef
    10. Dyer RJ, Nason JD (2004) Population graphs: the graph theoretic shape of genetic structure. Mol Ecol 13(7):1713鈥?727 w window">CrossRef
    11. Epps CW, McCullough DR, Wehausen JD, Bleich VC, Rechel JL (2004) Effects of climate change on population persistence of desert-dwelling mountain sheep in California. Conserv Biol 18(1):102鈥?13 w window">CrossRef
    12. Epps CW, Palsb酶ll PJ, Wehausen JD, Roderick GK, Ramey RR, McCullough DR (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8(10):1029鈥?038 w window">CrossRef
    13. Epps CW, Palsb酶ll PJ, Wehausen JD, Roderick GK, McCullough DR (2006) Elevation and connectivity define genetic refugia for mountain sheep as climate warms. Mol Ecol 15(14):4295鈥?302 w window">CrossRef
    14. Epps CW, Wehausen JD, Bleich VC, Torres SG, Brashares JS (2007) Optimizing dispersal and corridor models using landscape genetics. J Appl Ecol 44(4):714鈥?24 w window">CrossRef
    15. Epps CW, Wehausen JD, Palsb酶ll PJ, McCullough DR (2010) Using genetic tools to track desert bighorn sheep colonizations. J Wildl Manag 74(3):522鈥?31 w window">CrossRef
    16. Epps CW, Wasser SK, Keim JL, Mutayoba BM, Brashares JS (2013) Quantifying past and present connectivity illuminates a rapidly changing landscape for the African elephant. Mol Ecol 22(6):1574鈥?588
    17. Fortuna MA, G贸mez-Rodr铆guez C, Bascompte J (2006) Spatial network structure and amphibian persistence in stochastic environments. Proc R Soc B 273(1592):1429鈥?434 w window">CrossRef
    18. Frankham R (2005) Genetics and extinction. Biol Conserv 126(2):131鈥?40 w window">CrossRef
    19. Garroway CJ, Bowman J, Carr D, Wilson PJ (2008) Applications of graph theory to landscape genetics. Evol Appl 1(4):620鈥?30
    20. Graves TA, Beier P, Royle JA (2013) Current approaches using genetic distances produce poor estimates of landscape resistance to interindividual dispersal. Mol Ecol 22(15):3888鈥?903 w window">CrossRef
    21. Guillot G, Rousset F (2013) Dismantling the Mantel tests. Methods Ecol Evol 4(4):336鈥?44 w window">CrossRef
    22. Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63(1):151鈥?62 w window">CrossRef
    23. Holsinger KE, Weir BS (2009) Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet 10(9):639鈥?50 w window">CrossRef
    24. Hoyle M, James M (2005) Global warming, human population pressure, and viability of the world鈥檚 smallest butterfly. Conserv Biol 19(4):1113鈥?124 w window">CrossRef
    25. Jord谩n F, B谩ldi A, Orci KM, R谩cz I, Varga Z (2003) Characterizing the importance of habitat patches and corridors in maintaining the landscape connectivity of a / Pholidoptera transsylvanica (Orthoptera) metapopulation. Landscape Ecol 18(1):83鈥?2 w window">CrossRef
    26. Krausman PR, Sandoval AV, Etchberger RC (1999) Natural history of desert bighorn sheep. In: Valdez R, Krausman PR (eds) Mountain Sheep of North America. University of Arizona Press, Tucson
    27. Laita A, Kotiaho J, M枚nkk枚nen M (2011) Graph-theoretic connectivity measures: what do they tell us about connectivity? Landscape Ecol 26(7):951鈥?67 w window">CrossRef
    28. Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull ESA 15(3):237鈥?40
    29. Lookingbill TR, Gardner RH, Ferrari JR, Keller CE (2010) Combining a dispersal model with network theory to assess habitat connectivity. Ecol Appl 20(2):427鈥?41 w window">CrossRef
    30. Lovich JE, Ennen JR (2011) Wildlife conservation and solar energy development in the desert southwest, United States. BioScience 61(12):982鈥?92 w window">CrossRef
    31. McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci 104(50):19885鈥?9890 w window">CrossRef
    32. McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89(10):2712鈥?724 w window">CrossRef
    33. McRae BH, Hall SA, Beier P, Theobald DM (2012) Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. PLoS One 7(12):e52604
    34. Mills L (2007) Conservation of wildlife populations: demography, genetics, and management. Blackwell Publishing, Malden
    35. Minor ES, Urban DL (2007) Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol Appl 17(6):1771鈥?782 w window">CrossRef
    36. Moilanen A (2011) On the limitations of graph-theoretic connectivity in spatial ecology and conservation. J Appl Ecol 48(6):1543鈥?547 w window">CrossRef
    37. Moilanen A, Smith Andrew T, Hanski I (1998) Long-term dynamics in a metapopulation of the American pika. Am Nat 152(4):530鈥?42 w window">CrossRef
    38. Opsahl T, Agneessens F, Skvoretz J (2010) Node centrality in weighted networks: generalizing degree and shortest paths. Social Netw 32(3):245鈥?51 w window">CrossRef
    39. Parks SA, McKelvey KS, Schwartz MK (2012) Effects of weighting schemes on the identification of wildlife corridors generated with least-cost methods. Conserv Biol 27:145鈥?54 w window">CrossRef
    40. Pascual-Hortal L, Saura S (2006) Comparison and development of new graph-based landscape connectivity indices: towards the prioritization of habitat patches and corridors for conservation. Landscape Ecol 21(7):959鈥?67 w window">CrossRef
    41. Perez-Espona S, Perez-Barberia FJ, McLeod JE, Jiggins CD, Gordon IJ, Pemberton JM (2008) Landscape features affect gene flow of Scottish Highland red deer ( / Cervus elaphus). Mol Ecol 17(4):981鈥?96 w window">CrossRef
    42. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17(1):230鈥?37 w window">CrossRef
    43. Rozenfeld AF, Arnaud-Haond S, Hern谩ndez-Garc铆a E, Egu铆luz VM, Serr茫o EA, Duarte CM (2008) Network analysis identifies weak and strong links in a metapopulation system. Proc Natl Acad Sci 105(48):18824鈥?8829 w window">CrossRef
    44. Sawyer SC, Epps CW, Brashares JS (2011) Placing linkages among fragmented habitats: do least-cost models reflect how animals use landscapes? J Appl Ecol 48(3):668鈥?78 w window">CrossRef
    45. Spear SF, Balkenhol N, Fortin M-J, McRae BH, Scribner KIM (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19(17):3576鈥?591 w window">CrossRef
    46. Theobald DM, Reed SE, Fields K, Soul茅 M (2012) Connecting natural landscapes using a landscape permeability model to prioritize conservation activities in the United States. Conserv Lett 5(2):123鈥?33 w window">CrossRef
    47. Torres SG, Bleich VC, Wehausen JD (1994) Status of bighorn sheep in California, 1993. Desert Bighorn Council Trans 38:17鈥?8
    48. Urban DL, Minor ES, Treml EA, Schick RS (2009) Graph models of habitat mosaics. Ecol Lett 12(3):260鈥?73 w window">CrossRef
    49. Wasserman TN, Cushman SA, Littell JS, Shirk AJ, Landguth EL (2012) Population connectivity and genetic diversity of American marten (Martes americana) in the United States northern Rocky Mountains in a climate change context. Conserv Genet 14(2):529鈥?41
    50. Wehausen JD (1999) Rapid extinction of mountain sheep populations revisited. Conserv Biol 13(2):378鈥?84 w window">CrossRef
    51. Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST聽鈮犅?/(4Nm聽+聽1). Heredity 82(2):117鈥?25
    52. Zeller K, McGarigal K, Whiteley A (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27(6):777鈥?97 w window">CrossRef
  • 作者单位:Tyler G. Creech (1)
    Clinton W. Epps (1)
    Ryan J. Monello (2)
    John D. Wehausen (3)

    1. Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR, 97331, USA
    2. National Park Service, Biological Resource Management Division, 1201 Oak Ridge Drive, Fort Collins, CO, 80525, USA
    3. White Mountain Research Station, University of California, 3000 E. Line Street, Bishop, CA, 93514, USA
  • ISSN:1572-9761
文摘
Connectivity models using empirically-derived landscape resistance maps can predict potential linkages among fragmented animal and plant populations. However, such models have rarely been used to guide systematic decision-making, such as identifying the most important habitat patches and dispersal corridors to protect or restore in order to maximize regional connectivity. Combining resistance models with network theory offers one means of prioritizing management for connectivity, and we applied this approach to a metapopulation of desert bighorn sheep (Ovis canadensis nelsoni) in the Mojave Desert of the southwestern United States. We used a genetic-based landscape resistance model to construct network models of genetic connectivity (potential for gene flow) and demographic connectivity (potential for colonization of empty habitat patches), which may differ because of sex-biased dispersal in bighorn sheep. We identified high-priority habitat patches and corridors and found that the type of connectivity and the network metric used to quantify connectivity had substantial effects on prioritization results, although some features ranked highly across all combinations. Rankings were also sensitive to our empirically-derived estimates of maximum effective dispersal distance, highlighting the importance of this often-ignored parameter. Patch-based analogs of our network metrics predicted both neutral and mitochondrial genetic diversity of 25 populations within the study area. This study demonstrates that network theory can enhance the utility of landscape resistance models as tools for conservation, but it is critical to consider the implications of sex-biased dispersal, the biological relevance of network metrics, and the uncertainty associated with dispersal range and behavior when using this approach.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700