GAP-independent functions of DLC1 in metastasis
详细信息    查看全文
  • 作者:David Barras (1)
    Christian Widmann (1)
  • 关键词:DLC1 ; RhoGAP ; GAP ; independent ; Migration ; Invasion ; Metastasis
  • 刊名:Cancer and Metastasis Reviews
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:33
  • 期:1
  • 页码:87-100
  • 全文大小:596 KB
  • 参考文献:1. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. / CA: A Cancer Journal for Clinicians, 61(2), 69鈥?0.
    2. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. / Cell, 144(5), 646鈥?74.
    3. Chiang, A. C., & Massague, J. (2008). Molecular basis of metastasis. / New England Journal of Medicine, 359(26), 2814鈥?823.
    4. Pollard, T. D., & Borisy, G. G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. / Cell, 112(4), 453鈥?65.
    5. Mitra, S. K., Hanson, D. A., & Schlaepfer, D. D. (2005). Focal adhesion kinase: in command and control of cell motility. / Nature Reviews Molecular Cell Biology, 6(1), 56鈥?8.
    6. Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix鈥揷ytoskeleton crosstalk. / Nature Reviews Molecular Cell Biology, 2(11), 793鈥?05.
    7. Grise, F., Bidaud, A., & Moreau, V. (2009). Rho GTPases in hepatocellular carcinoma. / Biochimica et Biophysica Acta, 1795(2), 137鈥?51.
    8. Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. / Nature, 420(6916), 629鈥?35.
    9. Ridley, A. J. (2001). Rho GTPases and cell migration. / Journal of Cell Science, 114(15), 2713鈥?722.
    10. Bos, J. L., Rehmann, H., & Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. / Cell, 129(5), 865鈥?77.
    11. Tcherkezian, J., & Lamarche-Vane, N. (2007). Current knowledge of the large RhoGAP family of proteins. / Biology of the Cell, 99(2), 67鈥?6.
    12. Lahoz, A., & Hall, A. (2008). DLC1: a significant GAP in the cancer genome. / Genes and Development, 22(13), 1724鈥?730.
    13. Durkin, M. E., Yuan, B. Z., Zhou, X., Zimonjic, D. B., Lowy, D. R., Thorgeirsson, S. S., et al. (2007). DLC-1:a Rho GTPase-activating protein and tumour suppressor. / Journal of Cellular and Molecular Medicine, 11(5), 1185鈥?207.
    14. Xue, W., Krasnitz, A., Lucito, R., Sordella, R., Vanaelst, L., Cordon-Cardo, C., et al. (2008). DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. / Genes and Development, 22(11), 1439鈥?444.
    15. Liao, Y. C., & Lo, S. H. (2008). Deleted in liver cancer-1 (DLC-1): a tumor suppressor not just for liver. / International Journal of Biochemistry and Cell Biology, 40(5), 843鈥?47.
    16. Lukasik, D., Wilczek, E., Wasiutynski, A., & Gornicka, B. (2011). Deleted in liver cancer protein family in human malignancies (Review). / Oncology Letters, 2(5), 763鈥?68.
    17. El-Sitt, S., & El-Sibai, M. (2013). The STAR of the DLC family. / Journal of Receptor and Signal Transduction Research, 33(1), 10鈥?3.
    18. Kim, T. Y., Vigil, D., Der, C. J., & Juliano, R. L. (2009). Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility. / Cancer and Metastasis Reviews, 28(1鈥?), 77鈥?3.
    19. Feng, X., Li, C., Liu, W., Chen, H., Zhou, W., Wang, L., et al. (2013). DLC-1, a candidate tumor suppressor gene, inhibits the proliferation, migration and tumorigenicity of human nasopharyngeal carcinoma cells. / International Journal of Oncology, 42(6), 1973鈥?984.
    20. Wu, P. P., Jin, Y. L., Shang, Y. F., Jin, Z., Wu, P., & Huang, P. L. (2009). Restoration of DLC1 gene inhibits proliferation and migration of human colon cancer HT29 cells. / Annals of Clinical and Laboratory Science, 39(3), 263鈥?69.
    21. Heering, J., Erlmann, P., & Olayioye, M. A. (2009). Simultaneous loss of the DLC1 and PTEN tumor suppressors enhances breast cancer cell migration. / Experimental Cell Research, 315(15), 2505鈥?514.
    22. Kim, T. Y., Healy, K. D., Der, C. J., Sciaky, N., Bang, Y. J., & Juliano, R. L. (2008). Effects of structure of Rho GTPase-activating protein DLC-1 on cell morphology and migration. / Journal of Biological Chemistry, 283(47), 32762鈥?2770.
    23. Wong, C. M., Yam, J. W., Ching, Y. P., Yau, T. O., Leung, T. H., Jin, D. Y., et al. (2005). Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. / Cancer Research, 65(19), 8861鈥?868.
    24. Ullmannova-Benson, V., Guan, M., Zhou, X., Tripathi, V., Yang, X. Y., Zimonjic, D. B., et al. (2009). DLC1 tumor suppressor gene inhibits migration and invasion of multiple myeloma cells through RhoA GTPase pathway. / Leukemia, 23(2), 383鈥?90.
    25. Goodison, S., Yuan, J., Sloan, D., Kim, R., Li, C., Popescu, N. C., et al. (2005). The RhoGAP protein DLC-1 functions as a metastasis suppressor in breast cancer cells. / Cancer Research, 65(14), 6042鈥?053.
    26. Healy, K. D., Hodgson, L., Kim, T. Y., Shutes, A., Maddileti, S., Juliano, R. L., et al. (2008). DLC-1 suppresses non-small cell lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms. / Molecular Carcinogenesis, 47(5), 326鈥?37.
    27. Zhou, X., Zimonjic, D. B., Park, S. W., Yang, X. Y., Durkin, M. E., & Popescu, N. C. (2008). DLC1 suppresses distant dissemination of human hepatocellular carcinoma cells in nude mice through reduction of RhoA GTPase activity, actin cytoskeletal disruption and down-regulation of genes involved in metastasis. / International Journal of Oncology, 32(6), 1285鈥?291.
    28. Yau, T. O., Leung, T. H., Lam, S., Cheung, O. F., Tung, E. K., Khong, P. L., et al. (2009). Deleted in liver cancer 2 (DLC2) was dispensable for development and its deficiency did not aggravate hepatocarcinogenesis. / PLoS One, 4(8), e6566.
    29. Homma, Y., & Emori, Y. (1995). A dual functional signal mediator showing RhoGAP and phospholipase C-未 stimulating activities. / EMBO Journal, 14(2), 286鈥?91.
    30. Yuan, B. Z., Miller, M. J., Keck, C. L., Zimonjic, D. B., Thorgeirsson, S. S., & Popescu, N. C. (1998). Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. / Cancer Research, 58(10), 2196鈥?199.
    31. Durkin, M. E., Yuan, B. Z., Thorgeirsson, S. S., & Popescu, N. C. (2002). Gene structure, tissue expression, and linkage mapping of the mouse DLC-1 gene (Arhgap7). / Gene, 288(1鈥?), 119鈥?27.
    32. Qian, X., Durkin, M. E., Wang, D., Tripathi, B. K., Olson, L., Yang, X. Y., et al. (2012). Inactivation of the Dlc1 gene cooperates with downregulation of p15INK4b and p16Ink4a, leading to neoplastic transformation and poor prognosis in human cancer. / Cancer Research, 72(22), 5900鈥?911.
    33. Yuan, B. Z., Zhou, X., Durkin, M. E., Zimonjic, D. B., Gumundsdottir, K., Eyfjord, J. E., et al. (2003). DLC-1 gene inhibits human breast cancer cell growth and / in vivo tumorigenicity. / Oncogene, 22(3), 445鈥?50.
    34. Sahai, E., Olson, M. F., & Marshall, C. J. (2001). Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. / EMBO Journal, 20(4), 755鈥?66.
    35. Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. / Cancer Cell, 3(6), 537鈥?49.
    36. Matsuyama, H., Pan, Y., Oba, K., Yoshihiro, S., Matsuda, K., Hagarth, L., et al. (2001). Deletions on chromosome 8p22 may predict disease progression as well as pathological staging in prostate cancer. / Clinical Cancer Research, 7(10), 3139鈥?143.
    37. Wilson, P. J., McGlinn, E., Marsh, A., Evans, T., Arnold, J., Wright, K., et al. (2000). Sequence variants of DLC1 in colorectal and ovarian tumours. / Human Mutation, 15(2), 156鈥?65.
    38. Yuan, B. Z., Durkin, M. E., & Popescu, N. C. (2003). Promoter hypermethylation of DLC-1, a candidate tumor suppressor gene, in several common human cancers. / Cancer Genetics and Cytogenetics, 140(2), 113鈥?17.
    39. Guan, M., Zhou, X., Soulitzis, N., Spandidos, D. A., & Popescu, N. C. (2006). Aberrant methylation and deacetylation of deleted in liver cancer-1 gene in prostate cancer: potential clinical applications. / Clinical Cancer Research, 12(5), 1412鈥?419.
    40. Scholz, R. P., Regner, J., Theil, A., Erlmann, P., Holeiter, G., Jahne, R., et al. (2009). DLC1 interacts with 14-3-3 proteins to inhibit RhoGAP activity and block nucleocytoplasmic shuttling. / Journal of Cell Science, 122(1), 92鈥?02.
    41. Scholz, R. P., Gustafsson, J. O., Hoffmann, P., Jaiswal, M., Ahmadian, M. R., Eisler, S. A., et al. (2011). The tumor suppressor protein DLC1 is regulated by PKD-mediated GAP domain phosphorylation. / Experimental Cell Research, 317(4), 496鈥?03.
    42. Ko, F. C., Chan, L. K., Tung, E. K., Lowe, S. W., Ng, I. O., & Yam, J. W. (2010). Akt phosphorylation of deleted in liver cancer 1 abrogates its suppression of liver cancer tumorigenesis and metastasis. / Gastroenterology, 139(4), 1397鈥?407.
    43. Ko, F. C., Chan, L. K., Man-Fong, S. K., Yeung, Y. S., Yuk-Ting, T. E., Lu, P., et al. (2013). PKA-induced dimerization of the RhoGAP DLC1 promotes its inhibition of tumorigenesis and metastasis. / Nature Communications, 41618.
    44. Zhong, D., Zhang, J., Yang, S., Soh, U. J., Buschdorf, J. P., Zhou, Y. T., et al. (2009). The SAM domain of the RhoGAP DLC1 binds EF1A1 to regulate cell migration. / Journal of Cell Science, 122(3), 414鈥?24.
    45. Kim, C. A., & Bowie, J. U. (2003). SAM domains: uniform structure, diversity of function. / Trends in Biochemical Sciences, 28(12), 625鈥?28.
    46. Li, G., Du, X., Vass, W. C., Papageorge, A. G., Lowy, D. R., & Qian, X. (2011). Full activity of the deleted in liver cancer 1 (DLC1) tumor suppressor depends on an LD-like motif that binds talin and focal adhesion kinase (FAK). / Proceedings of the National Academy of Sciences of the United States of America, 108(41), 17129鈥?7134.
    47. Sekimata, M., Kabuyama, Y., Emori, Y., & Homma, Y. (1999). Morphological changes and detachment of adherent cells induced by p122, a GTPase-activating protein for Rho. / Journal of Biological Chemistry, 274(25), 17757鈥?7762.
    48. Clark, B. J. (2012). The mammalian START domain protein family in lipid transport in health and disease. / Journal of Endocrinology, 212(3), 257鈥?75.
    49. Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: diversity and escape mechanisms. / Nature Reviews Cancer, 3(5), 362鈥?74.
    50. Holeiter, G., Heering, J., Erlmann, P., Schmid, S., Jahne, R., & Olayioye, M. A. (2008). Deleted in liver cancer 1 controls cell migration through a Dia1-dependent signaling pathway. / Cancer Research, 68(21), 8743鈥?751.
    51. Jin, Y., Tian, X., Shang, Y., & Huang, P. (2008). Inhibition of DLC-1 gene expression by RNA interference in the colon cancer LoVo cell line. / Oncology Reports, 19(3), 669鈥?74.
    52. Shih, Y. P., Takada, Y., & Lo, S. H. (2012). Silencing of DLC1 upregulates PAI-1 expression and reduces migration in normal prostate cells. / Molecular Cancer Research, 10(1), 34鈥?9.
    53. Durkin, M. E., Avner, M. R., Huh, C. G., Yuan, B. Z., Thorgeirsson, S. S., & Popescu, N. C. (2005). DLC-1, a Rho GTPase-activating protein with tumor suppressor function, is essential for embryonic development. / FEBS Letters, 579(5), 1191鈥?196.
    54. Franz, C. M., Jones, G. E., & Ridley, A. J. (2002). Cell migration in development and disease. / Developmental Cell, 2(2), 153鈥?58.
    55. Pilz, D., Stoodley, N., & Golden, J. A. (2002). Neuronal migration, cerebral cortical development, and cerebral cortical anomalies. / Journal of Neuropathology and Experimental Neurology, 61(1), 1鈥?1.
    56. Cramer L.P. (2013). Mechanism of cell rear retraction in migrating cells. Current Opinion in Cell Biology 25:591鈥?99.
    57. Pollard, T. D., & Cooper, J. A. (2009). Actin, a central player in cell shape and movement. / Science, 326(5957), 1208鈥?212.
    58. Nobes, C. D., & Hall, A. (1999). Rho GTPases control polarity, protrusion, and adhesion during cell movement. / Journal of Cell Biology, 144(6), 1235鈥?244.
    59. Ridley, A. J., & Hall, A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. / Cell, 70(3), 389鈥?99.
    60. Takaishi, K., Kikuchi, A., Kuroda, S., Kotani, K., Sasaki, T., & Takai, Y. (1993). Involvement of rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI) in cell motility. / Molecular and Cellular Biology, 13(1), 72鈥?9.
    61. Monnier, Y., Farmer, P., Bieler, G., Imaizumi, N., Sengstag, T., Alghisi, G. C., et al. (2008). CYR61 and 伪V5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma. / Cancer Research, 68(18), 7323鈥?331.
    62. Yilmaz, M., & Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell invasion. / Cancer and Metastasis Reviews, 28(1鈥?), 15鈥?3.
    63. Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. / Nature, 392(6672), 190鈥?93.
    64. Banyard, J., Anand-Apte, B., Symons, M., & Zetter, B. R. (2000). Motility and invasion are differentially modulated by Rho family GTPases. / Oncogene, 19(4), 580鈥?91.
    65. Sahai, E., & Marshall, C. J. (2002). RHO-GTPases and cancer. / Nature Reviews Cancer, 2(2), 133鈥?42.
    66. Yoshioka, K., Nakamori, S., & Itoh, K. (1999). Overexpression of small GTP-binding protein RhoA promotes invasion of tumor cells. / Cancer Research, 59(8), 2004鈥?010.
    67. Wheeler, A. P., & Ridley, A. J. (2004). Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. / Experimental Cell Research, 301(1), 43鈥?9.
    68. Liu, A. X., Rane, N., Liu, J. P., & Prendergast, G. C. (2001). RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. / Molecular and Cellular Biology, 21(20), 6906鈥?912.
    69. Hakem, A., Sanchez-Sweatman, O., You-Ten, A., Duncan, G., Wakeham, A., Khokha, R., et al. (2005). RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. / Genes and Development, 19(17), 1974鈥?979.
    70. Clark, E. A., Golub, T. R., Lander, E. S., & Hynes, R. O. (2000). Genomic analysis of metastasis reveals an essential role for RhoC. / Nature, 406(6795), 532鈥?35.
    71. Iiizumi, M., Bandyopadhyay, S., Pai, S. K., Watabe, M., Hirota, S., Hosobe, S., et al. (2008). RhoC promotes metastasis via activation of the Pyk2 pathway in prostate cancer. / Cancer Research, 68(18), 7613鈥?620.
    72. Bishop, A. L., & Hall, A. (2000). Rho GTPases and their effector proteins. / Biochemistry Journal, 348(2), 2241鈥?255.
    73. Matsui, T., Amano, M., Yamamoto, T., Chihara, K., Nakafuku, M., Ito, M., et al. (1996). Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. / EMBO Journal, 15(9), 2208鈥?216.
    74. Chesarone, M. A., DuPage, A. G., & Goode, B. L. (2010). Unleashing formins to remodel the actin and microtubule cytoskeletons. / Nature Reviews Molecular Cell Biology, 11(1), 62鈥?4.
    75. Raftopoulou, M., & Hall, A. (2004). Cell migration: Rho GTPases lead the way. / Developments in Biologicals, 265(1), 23鈥?2.
    76. Palazzo, A. F., Joseph, H. L., Chen, Y. J., Dujardin, D. L., Alberts, A. S., Pfister, K. K., et al. (2001). Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. / Current Biology, 11(19), 1536鈥?541.
    77. Reymond, N., Im, J. H., Garg, R., Vega, F. M., Borda, D. B., Riou, P., et al. (2012). Cdc42 promotes transendothelial migration of cancer cells through 尾1 integrin. / Journal of Cell Biology, 199(4), 653鈥?68.
    78. Wong, C. C., Wong, C. M., Ko, F. C., Chan, L. K., Ching, Y. P., Yam, J. W., et al. (2008). Deleted in liver cancer 1 (DLC1) negatively regulates Rho/ROCK/MLC pathway in hepatocellular carcinoma. / PLoS One, 3(7), e2779.
    79. Ishizaki, T., Uehata, M., Tamechika, I., Keel, J., Nonomura, K., Maekawa, M., et al. (2000). Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. / Molecular Pharmacology, 57(5), 976鈥?83.
    80. Tripathi, V., Popescu, N. C., & Zimonjic, D. B. (2012). DLC1 interaction with 伪-catenin stabilizes adherens junctions and enhances DLC1 antioncogenic activity. / Molecular and Cellular Biology, 32(11), 2145鈥?159.
    81. Harris, T. J., & Tepass, U. (2010). Adherens junctions: from molecules to morphogenesis. / Nature Reviews Molecular Cell Biology, 11(7), 502鈥?14.
    82. Desai, R., Sarpal, R., Ishiyama, N., Pellikka, M., Ikura, M., & Tepass, U. (2013). Monomeric 伪-catenin links cadherin to the actin cytoskeleton. / Nature Cell Biology, 15(3), 261鈥?73.
    83. Kobielak, A., & Fuchs, E. (2004). 伪-catenin: at the junction of intercellular adhesion and actin dynamics. / Nature Reviews Molecular Cell Biology, 5(8), 614鈥?25.
    84. Tripathi V., Popescu N.C. & Zimonjic D.B. (2013). DLC1 induces expression of E-cadherin in prostate cancer cells through Rho pathway and suppresses invasion. Oncogene. doi:10.1038/onc.2013.7 .
    85. Yam, J. W., Ko, F. C., Chan, C. Y., Jin, D. Y., & Ng, I. O. (2006). Interaction of deleted in liver cancer 1 with tensin2 in caveolae and implications in tumor suppression. / Cancer Research, 66(17), 8367鈥?372.
    86. Qian, X., Li, G., Asmussen, H. K., Asnaghi, L., Vass, W. C., Braverman, R., et al. (2007). Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities. / Proceedings of the National Academy of Sciences of the United States of America, 104(21), 9012鈥?017.
    87. Liao, Y. C., Si, L., deVere White, R. W., & Lo, S. H. (2007). The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1. / Journal of Cell Biology, 176(1), 43鈥?9.
    88. Cao, X., Voss, C., Zhao, B., Kaneko, T., & Li, S. S. (2012). Differential regulation of the activity of deleted in liver cancer 1 (DLC1) by tensins controls cell migration and transformation. / Proceedings of the National Academy of Sciences of the United States of America, 109(5), 1455鈥?460.
    89. Yang, X., Popescu, N. C., & Zimonjic, D. B. (2011). DLC1 interaction with S100A10 mediates inhibition of / in vitro cell invasion and tumorigenicity of lung cancer cells through a RhoGAP-independent mechanism. / Cancer Research, 71(8), 2916鈥?925.
    90. Du, X., Qian, X., Papageorge, A., Schetter, A. J., Vass, W. C., Liu, X., et al. (2012). Functional interaction of tumor suppressor DLC1 and caveolin-1 in cancer cells. / Cancer Research, 72(17), 4405鈥?416.
    91. Yang, X. Y., Guan, M., Vigil, D., Der, C. J., Lowy, D. R., & Popescu, N. C. (2009). p120Ras-GAP binds the DLC1 Rho-GAP tumor suppressor protein and inhibits its RhoA GTPase and growth-suppressing activities. / Oncogene, 28(11), 1401鈥?409.
    92. Yin, H. L., & Janmey, P. A. (2003). Phosphoinositide regulation of the actin cytoskeleton. / Annual Review of Physiology, 65(65), 761鈥?89.
    93. Raucher, D., Stauffer, T., Chen, W., Shen, K., Guo, S., York, J. D., et al. (2000). Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. / Cell, 100(2), 221鈥?28.
    94. Toker, A. (1998). The synthesis and cellular roles of phosphatidylinositol 4,5-bisphosphate. / Current Opinion in Cell Biology, 10(2), 254鈥?61.
    95. Kawai, K., Yamaga, M., Iwamae, Y., Kiyota, M., Kamata, H., Hirata, H., et al. (2004). A PLC未1-binding protein, p122RhoGAP, is localized in focal adhesions. / Biochemical Society Transactions, 32(6), 1107鈥?109.
    96. Xiang, T., Li, L., Fan, Y., Jiang, Y., Ying, Y., Putti, T. C., et al. (2010). PLCD1 is a functional tumor suppressor inducing G(2)/M arrest and frequently methylated in breast cancer. / Cancer Biology and Therapy, 10(5), 520鈥?27.
    97. Liao, Y. C., Shih, Y. P., & Lo, S. H. (2008). Mutations in the focal adhesion targeting region of deleted in liver cancer-1 attenuate their expression and function. / Cancer Research, 68(19), 7718鈥?722.
    98. Kawai, K., Iwamae, Y., Yamaga, M., Kiyota, M., Ishii, H., Hirata, H., et al. (2009). Focal adhesion-localization of START-GAP1/DLC1 is essential for cell motility and morphology. / Genes to Cells, 14(2), 227鈥?41.
    99. Chan, L. K., Ko, F. C., Ng, I. O., & Yam, J. W. (2009). Deleted in liver cancer 1 (DLC1) utilizes a novel binding site for Tensin2 PTB domain interaction and is required for tumor-suppressive function. / PLoS One, 4(5), e5572.
    100. Chan, L. K., Ko, F. C., Sze, K. M., Ng, I. O., & Yam, J. W. (2011). Nuclear-targeted deleted in liver cancer 1 (DLC1) is less efficient in exerting its tumor suppressive activity both / in vitro and / in vivo. PLoS One, 6(9), e25547.
    101. Chen, L., Liu, C., Ko, F. C., Xu, N., Ng, I. O., Yam, J. W., et al. (2012). Solution structure of the phosphotyrosine binding (PTB) domain of human tensin2 protein in complex with deleted in liver cancer 1 (DLC1) peptide reveals a novel peptide binding mode. / Journal of Biological Chemistry, 287(31), 26104鈥?6114.
    102. Zaidel-Bar, R., Cohen, M., Addadi, L., & Geiger, B. (2004). Hierarchical assembly of cell-matrix adhesion complexes. / Biochemical Society Transactions, 32(3), 416鈥?20.
    103. Lo, S. H. (2004). Tensin. / International Journal of Biochemistry and Cell Biology, 36(1), 31鈥?4.
    104. Chen, H., Duncan, I. C., Bozorgchami, H., & Lo, S. H. (2002). Tensin1 and a previously undocumented family member, tensin2, positively regulate cell migration. / Proceedings of the National Academy of Sciences of the United States of America, 99(2), 733鈥?38.
    105. Chen, H., & Lo, S. H. (2003). Regulation of tensin-promoted cell migration by its focal adhesion binding and Src homology domain 2. / Biochemistry Journal, 370(3), 1039鈥?045.
    106. Calderwood, D. A., Fujioka, Y., de Pereda, J. M., Garcia-Alvarez, B., Nakamoto, T., Margolis, B., et al. (2003). Integrin 尾 cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. / Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2272鈥?277.
    107. Schaller, M. D. (2001). Paxillin: a focal adhesion-associated adaptor protein. / Oncogene, 20(44), 6459鈥?472.
    108. West, K. A., Zhang, H., Brown, M. C., Nikolopoulos, S. N., Riedy, M. C., Horwitz, A. F., et al. (2001). The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). / Journal of Cell Biology, 154(1), 161鈥?76.
    109. Li, Y., & Cozzi, P. J. (2007). Targeting uPA/uPAR in prostate cancer. / Cancer Treatment Reviews, 33(6), 521鈥?27.
    110. Czekay, R. P., & Loskutoff, D. J. (2009). Plasminogen activator inhibitors regulate cell adhesion through a uPAR-dependent mechanism. / Journal of Cellular Physiology, 220(3), 655鈥?63.
    111. Czekay, R. P., Aertgeerts, K., Curriden, S. A., & Loskutoff, D. J. (2003). Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. / Journal of Cell Biology, 160(5), 781鈥?91.
    112. Czekay, R. P., Wilkins-Port, C. E., Higgins, S. P., Freytag, J., Overstreet, J. M., Klein, R. M., et al. (2011). PAI-1: an integrator of cell signaling and migration. / International Journal of Cell Biology, 2011562481.
    113. Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. / Cancer Cell, 8(3), 241鈥?54.
    114. Stewart, D. A., Cooper, C. R., & Sikes, R. A. (2004). Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. / Reproductive Biology and Endocrinology, 22.
    115. Deryugina, E. I., & Quigley, J. P. (2006). Matrix metalloproteinases and tumor metastasis. / Cancer and Metastasis Reviews, 25(1), 9鈥?4.
    116. Wai, P. Y., & Kuo, P. C. (2004). The role of Osteopontin in tumor metastasis. / Journal of Surgical Research, 121(2), 228鈥?41.
    117. Navarro, A., Anand-Apte, B., & Parat, M. O. (2004). A role for caveolae in cell migration. / FASEB Journal, 18(15), 1801鈥?811.
    118. Wei, Y., Yang, X., Liu, Q., Wilkins, J. A., & Chapman, H. A. (1999). A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. / Journal of Cell Biology, 144(6), 1285鈥?294.
    119. Puyraimond, A., Fridman, R., Lemesle, M., Arbeille, B., & Menashi, S. (2001). MMP-2 colocalizes with caveolae on the surface of endothelial cells. / Experimental Cell Research, 262(1), 28鈥?6.
    120. Isshiki, M., Ando, J., Yamamoto, K., Fujita, T., Ying, Y., & Anderson, R. G. (2002). Sites of Ca(2+) wave initiation move with caveolae to the trailing edge of migrating cells. / Journal of Cell Science, 115(3), 475鈥?84.
    121. Yamaga, M., Sekimata, M., Fujii, M., Kawai, K., Kamata, H., Hirata, H., et al. (2004). A PLC未1-binding protein, p122/RhoGAP, is localized in caveolin-enriched membrane domains and regulates caveolin internalization. / Genes to Cells, 9(1), 25鈥?7.
    122. Liu, G., Grant, W. M., Persky, D., Latham, V. M., Jr., Singer, R. H., & Condeelis, J. (2002). Interactions of elongation factor 1伪 with F-actin and 尾-actin mRNA: implications for anchoring mRNA in cell protrusions. / Molecular Biology of the Cell, 13(2), 579鈥?92.
    123. Gross, S. R., & Kinzy, T. G. (2005). Translation elongation factor 1伪 is essential for regulation of the actin cytoskeleton and cell morphology. / Nature Structural and Molecular Biology, 12(9), 772鈥?78.
    124. Zhang, J., Guo, H., Mi, Z., Gao, C., Bhattacharya, S., Li, J., et al. (2009). EF1A1-actin interactions alter mRNA stability to determine differential osteopontin expression in HepG2 and Hep3B cells. / Experimental Cell Research, 315(2), 304鈥?12.
    125. Hu, K. Q., & Settleman, J. (1997). Tandem SH2 binding sites mediate the RasGAP-RhoGAP interaction: a conformational mechanism for SH3 domain regulation. / EMBO Journal, 16(3), 473鈥?83.
    126. Bradley, W. D., Hernandez, S. E., Settleman, J., & Koleske, A. J. (2006). Integrin signaling through Arg activates p190RhoGAP by promoting its binding to p120RasGAP and recruitment to the membrane. / Molecular Biology of the Cell, 17(11), 4827鈥?836.
    127. Akagi, I., Okayama, H., Schetter, A. J., Robles, A. I., Kohno, T., Bowman, E. D., et al. (2013). Combination of Protein Coding and Noncoding Gene Expression as a Robust Prognostic Classifier in Stage I Lung Adenocarcinoma. / Cancer Research, 73(13), 3821鈥?832.
    128. Ullmannova, V., & Popescu, N. C. (2007). Inhibition of cell proliferation, induction of apoptosis, reactivation of DLC1, and modulation of other gene expression by dietary flavone in breast cancer cell lines. / Cancer Detection and Prevention, 31(2), 110鈥?18.
    129. Nagaraja, G. M., & Kandpal, R. P. (2004). Chromosome 13q12 encoded Rho GTPase activating protein suppresses growth of breast carcinoma cells, and yeast two-hybrid screen shows its interaction with several proteins. / Biochemical and Biophysical Research Communications, 313(3), 654鈥?65.
    130. Leung, T. H., Ching, Y. P., Yam, J. W., Wong, C. M., Yau, T. O., Jin, D. Y., et al. (2005). Deleted in liver cancer 2 (DLC2) suppresses cell transformation by means of inhibition of RhoA activity. / Proceedings of the National Academy of Sciences of the United States of America, 102(42), 15207鈥?5212.
    131. Lin, Y., Chen, N. T., Shih, Y. P., Liao, Y. C., Xue, L., & Lo, S. H. (2010). DLC2 modulates angiogenic responses in vascular endothelial cells by regulating cell attachment and migration. / Oncogene, 29(20), 3010鈥?016.
    132. Ng, D. C., Chan, S. F., Kok, K. H., Yam, J. W., Ching, Y. P., Ng, I. O., et al. (2006). Mitochondrial targeting of growth suppressor protein DLC2 through the START domain. / FEBS Letters, 580(1), 191鈥?98.
    133. Ching, Y. P., Wong, C. M., Chan, S. F., Leung, T. H., Ng, D. C., Jin, D. Y., et al. (2003). Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma. / Journal of Biological Chemistry, 278(12), 10824鈥?0830.
    134. Barras, D., Lorusso, G., R眉egg, C., & Widmann, C. (2013). Inhibition of cell migration and invasion by the TAT-RasGAP317-326 peptide requires the DLC1 tumor suppressor. Oncogene. doi:10.1038/onc.2013.465 .
  • 作者单位:David Barras (1)
    Christian Widmann (1)

    1. Department of Physiology, University of Lausanne, Bugnon 7, 1005, Lausanne, Switzerland
  • ISSN:1573-7233
文摘
Metastases are responsible for most cancer-related deaths. One of the hallmarks of metastatic cells is increased motility and migration through extracellular matrixes. These processes rely on specific small GTPases, in particular those of the Rho family. Deleted in liver cancer-1 (DLC1) is a tumor suppressor that bears a RhoGAP activity. This protein is lost in most cancers, allowing malignant cells to proliferate and disseminate in a Rho-dependent manner. However, DLC1 is also a scaffold protein involved in alternative pathways leading to tumor and metastasis suppressor activities. Recently, substantial information has been gathered on these mechanisms and this review is aiming at describing the potential and known alternative GAP-independent mechanisms allowing DLC1 to impair migration, invasion, and metastasis formation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700