Effect of small interfering RNA transfection on FAK and DLC1 mRNA expression in OVCAR-3
详细信息    查看全文
  • 作者:HuiRong Shi (1) huirongshi@yahoo.com.cn
    HuiNa Liu (12)
    GuoQiang Zhao (3)
  • 关键词:pGFP ; siFAK ; DLC1 vector – ; pGFP ; siCon ; DLC1 vector – ; Transfection – ; OVCAR ; 3 – ; siRNA – ; FAK – ; DLC1
  • 刊名:Molecular Biology Reports
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:39
  • 期:10
  • 页码:9299-9306
  • 全文大小:506.1 KB
  • 参考文献:1. Markman M (2008) Pharmaceutical management of ovarian cancer: current status. Drugs 68:771–789
    2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90
    3. Agarwal R, Kaye SB (2003) Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 3(7):502
    4. Vidal L, Attard G, Kaye S, De Bono J (2004) Reversing resistance to targeted therapy. J Chemother 16(Suppl 4):7–12
    5. Richardson A, Kaye SB (2005) Drug resistance in ovarian cancer: the emerging importance of gene transcription and spatio-temporal regulation of resistance. Drug Resist Updat 8(5):311–321
    6. Akhtar S, Benter IF (2007) Nonviral delivery of synthetic siRNAs in vivo. J Clin Invest 117:3623–3632
    7. Aagaard L, Rossi JJ (2007) RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 59:75–86
    8. Shim MS, Kwon YJ (2010) Efficient and targeted delivery of siRNA in vivo. FEBS J 277:4814–4827
    9. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74(12):5463–5467
    10. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    11. Cannistra SA (2004) Cancer of the ovary. N Engl J Med 351:2519–2529
    12. Zhou X, Thorgeirsson SS, Popescu NC (2004) Restoration of DLC-1 gene expression induces apoptosis and inhibits both cell growth and tumorigenicity in human hepatocellular carcinoma cells. Oncogene 23(6):1308–1313
    13. Durkin ME, Yuan BZ, Zhou X, Zimonjic DB, Lowy DR, Thorgeirsson SS, Popescu NC (2007) DLC-1: a Rho GTPase-activating protein and tumour suppressor. J Cell Mol Med 11(5):1185–1207
    14. Kim TY, Lee JW, Kim HP, Jong HS, Kim TY, Jung M, Bang YJ (2007) DLC-1, a GTPase-activating protein for Rho, is associated with cell proliferation, morphology, and migration in human hepatocellular carcinoma. Biochem Biophys Res Commun 355(1):72–77
    15. Holeiter G, Heering J, Erlmann P, Schmid S, Jahne R, Olayioye MA (2008) Deleted in liver cancer 1 controls cell migration through a Dia1-dependent signaling pathway. Cancer Res 68:8743–8751
    16. Syed V, Mukherjee K, Lyons-Weiler J, Lau KM, Mashima T, Tsuruo T, Ho SM (2005) Identification of ATF-3, caveolin-1, DLC-1, and NM23-H2 as putative antitumorigenic, progesterone-regulated genes for ovarian cancer cells by gene profiling. Oncogene 24:1774–1787
    17. Feng MH, Huang B, Du ZG, Xu XP, Chen Z (2011) DLC-1 as a modulator of proliferation, apoptosis and migration in Burkitt’s lymphoma cells. Mol Biol Rep 38:1915–1920
    18. Baik S-H, Jee B-K, Choi J-S, Yoon H-K, Lee K-H, Kim YH, Lim Y (2009) DNA profiling by array comparative genomic hybridization (CGH) of peripheral blood mononuclear cells (PBMC) and tumor tissue cell in non-small cell lung cancer (NSCLC). Mol Biol Rep 36:1767–1778
    19. Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD (2000) FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2:249–256
    20. Volberg T, Romer L, Zamir E, Geiger B (2001) pp 60(c-src) and related tyrosine kinases: a role in the assembly and reorganization of matrix adhesions. J Cell Sci 114:2279–2289
    21. Zhao JH, Reiske H, Guan JL (1998) Regulation of the cell cycle by focal adhesion kinase. J Cell Biol 143:1997–2008
    22. McLean GW, Komiyama NH, Serrels B, Asano H, Reynolds L, Conti F, Hodivala-Dilke K, Metzger D, Chambon P, Grant SG, Frame MC (2004) Specific deletion of focal adhesion kinase suppresses tumor formation and blocks malignant progression. Genes Dev 18:2998–3003
    23. Li N, Li Q, Zhou XD, Kolosov VP, Perelman JM (2012) Chronic mechanical stress induces mucin 5AC expression in human bronchial epithelial cells through ERK dependent pathways. Mol Biol Rep 39:1019–1028
    24. He S, Zhang DC, Cheng F, Gong FH, Guo YN (2009) Applications of RNA interference in cancer therapeutics as a powerful tool for suppressing gene expression. Mol Biol Rep 36:2153–2163
    25. Benlimame N, He Q, Jie S, Xiao D, Xu YJ, Loignon M, Schlaepfer DD, Alaoui-Jamali MA (2005) FAK signaling is critical for ErbB-2/ErbB-3 receptor cooperation for oncogenic transformation and invasion. J Cell Biol 171:505–516
    26. Mitra SK, Lim ST, Chi A, Schlaepfer DD (2006) Intrinsic focal adhesion kinase activity controls orthotopic breast carcinoma metastasis via the regulation of urokinase plasminogen activator expression in a syngeneic tumor model. Oncogene 25:4429–4440
    27. Van Nimwegen MJ, Verkoeijen S, Van Buren L, Burg D, Van de Water B (2005) Requirement for focal adhesion kinase in the early phase of mammary adenocarcinoma lung metastasis formation. Cancer Res 65:4698–4706
    28. Schaller MD (2001) Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim Biophys Acta 1540:1–21
    29. Schlaepfer DD, Hauck CR, Sieg DJ (1999) Signaling through focal adhesion kinase. Prog Biophys Mol Biol 71:435–478
    30. Zhao J, Zheng C, Guan J (2000) Pyk2 and FAK differentially regulate progression of the cell cycle. J Cell Sci 113:3063–3072
    31. Reif S, Lang A, Lindquist JN, Yata Y, Gabele E, Scanga A, Brenner DA, Rippe RA (2003) The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem 278:8083–8090
    32. Horowitz JC, Rogers DS, Sharma V, Vittal R, White ES, Cui Z, Thannickal VJ (2007) Combinatorial activation of FAK and AKT by transforming growth factor-β1 confers an anoikis-resistant phenotype to myofibroblasts. Cell Signal 19:761–771
    33. Bouchard V, Demers MJ, Thibodeau S, Laquerre V, Fujita N, Tsuruo T, Beaulieu JF, Gauthier R, Vezina A, Villeneuve L, Vachon PH (2007) Fak/Src signaling in human intestinal epithelial cell survival and anoikis: differentiation state-specific uncoupling with the PI3-K/Akt-1 and MEK/Erk pathways. J Cell Physiol 212:717–728
    34. Dillon RL, White DE, Muller WJ (2007) The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer. Oncogene 26:1338–1345
    35. Orsulic S, Li Y, Soslow RA, Vitale-Cross LA, Gutkind JS, Varmus HE (2002) Induction of ovarian cancer by defined multiple genetic changes in a mouse model system. Cancer Cell 1:53–62
    36. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43
    37. Fernandes-Alnemri T, Litwack G, Alnemri ES (1994) CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem 269:30761–30764
    38. Tormanen-Napankangas U, Soini Y, Kahlos K, Kinnula V, Paakko P (2001) Expression of caspases-3, -6 and -8 and their relation to apoptosis in non-small cell lung carcinoma. Int J Cancer 93:192–198
    39. Hsia JY, Chen CY, Chen JT, Hsu CP, Shai SE, Yang SS, Chuang CY, Wang PY, Miaw J (2003) Prognostic significance of caspase-3 expression in primary resected esophageal squamous cell carcinoma. Eur J Surg Oncol 29:44–48
    40. Kania J, Konturek SJ, Marlicz K, Hahn EG, Konturek PC (2003) Expression of surviving and caspase-3 in gastric cancer. Dig Dis Sci 48:266–271
    41. Degterev A, Yuan J (2008) Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9(5):378–390
    42. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1:949–957
    43. Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC (2001) Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 22:255–288
    44. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249
  • 作者单位:1. Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China2. Department of Obstetrics and Gynecology, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007 China3. College of Basical sciences, Zhengzhou University, Zhengzhou, 450001 Henan, China
  • ISSN:1573-4978
文摘
RNA interference is an evolutionarily conserved cellular defense mechanism that protects cells from hostile genes and regulates the function of normal genes during growth and development. In this study, we established GFP-siFAK-DLC1 vector and transfect the vector into OVCAR-3 cells. RT-PCR and western blot analyses were performed for FAK, DLC1 mRNA, and protein expression in OVCAR-3 cells. ELISA method was used for caspase-3 and caspase-9 activities. These studies demonstrate that both recombinant pGFP-siFAK-DLC1 vector and pGFP-siCon-DLC1 vector may effectively promote DLC1 mRNA transcription and didn’t affect siRNA effect. Recombinant vector (pGFP-siFAK-DLC1) may promote DLC1 gene expression, and effectively silence FAK gene expression. Silencing FAK mRNA expression and DLC1 mRNA expression may markedly enhance caspase-3 and caspase-9 activities in OVCAR-3 cells. These results showed that in ovarian cancer OVCAR-3 cell silencing FAK gene expression or / and increasing DLC-1 gene expression, could improve Caspase-3 and Caspase-9 protease activities. In the expression of DLC-1 and silence FAK expression group (double action group) effect was more significant as compared with the silence FAK gene group or expression of DLC-1 gene alone, difference was significant (p < 0.05).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700