Unique Structural Changes in Calcium-Bound Calmodulin Upon Interaction with Protein 4.1R FERM Domain: Novel Insights into the Calcium-dependent Regulation of 4.1R FERM Domain Binding to Membrane Proteins by Calmodulin
详细信息    查看全文
  • 作者:Wataru Nunomura (1) (2)
    Noriyoshi Isozumi (3)
    Shigeyoshi Nakamura (4)
    Yuji Jinbo (5)
    Shinya Ohki (3)
    Shun-ichi Kidokoro (4)
    Hideki Wakui (2)
    Yuichi Takakuwa (6)
  • 关键词:Calcium ; bound calmodulin ; Protein 4.1R ; Calorimetry ; NMR
  • 刊名:Cell Biochemistry and Biophysics
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:69
  • 期:1
  • 页码:7-19
  • 全文大小:1,041 KB
  • 参考文献:1. Diakowski, W., Grzybek, M., & Sikorski, A. F. (2006). Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily. / Folia Histochemica et Cyrobiologica, / 44, 231-48.
    2. Nunomura, W., & Takakuwa, Y. (2006). Regulation of protein 4.1R interactions with membrane proteins by Ca2+ and calmodulin. / Frontier Bioscience, / 11, 1522-539. CrossRef
    3. Pasternack, G. R., Anderson, R. A., Leto, T. L., & Marchesi, V. T. (1985). Interactions between protein 4.1 and band 3. An alternative binding site for an element of the membrane skeleton. / Journal of Biological Chemistry, / 260, 3676-683.
    4. Anderson, R. A., & Lovrien, R. E. (1984). Glycophorin is linked by band 4.1 protein to the human erythrocyte membrane skeleton. / Nature, / 307(5952), 655-58. CrossRef
    5. Nunomura, W., Takakuwa, Y., Tokimitsu, R., Krauss, S. W., Kawashima, M., & Mohandas, N. (1997). Regulation of CD44-protein 4.1 interaction by Ca2+ and calmodulin. Implications for modulation of CD44-ankyrin interaction. / Journal of Biological Chemistry, / 272, 30322-0328. CrossRef
    6. Robb, V. A., Li, W., Gascard, P., Perry, A., Mohandas, N., & Gutmann, D. H. (2003). Identification of a third Protein 4.1 tumor suppressor, Protein 4.1R, in meningioma pathogenesis. / Neurobiology of disease, / 13, 191-02. CrossRef
    7. Hattori, M., Nunomura, W., Ito, E., Ohta, H., & Takakuwa, Y. (2006). Regulation of ankyrin interaction with CD44 by protein 4.1 in Hela cells. / Membrane, / 31, 107-14.
    8. Nunomura, W., Denker, S. P., Barber, D. L., Takakuwa, Y., & Gascard, P. (2012). Characterization of cytoskeletal protein 4.1R interaction with NHE1 (Na+/H+ exchanger isoform 1). / Biochemical Journal, / 446, 427-35. CrossRef
    9. Marfatia, S. M., Morais-Cabral, J. H., Kim, A. C., Byron, O., & Chishti, A. H. (1997). The PDZ domain of human erythrocyte p55 mediates its binding to the cytoplasmic carboxyl terminus of glycophorin C. Analysis of the binding interface by in vitro mutagenesis. / Journal of Biological Chemistry, / 272, 24191-4197. CrossRef
    10. Nunomura, W., Takakuwa, Y., Parra, M., Conboy, J., & Mohandas, N. (2000). Regulation of protein 4.1R, p55, and glycophorin C ternary complex in human erythrocyte membrane. / Journal of Biological Chemistry, / 275, 24540-4546. CrossRef
    11. Jurado, L. A., Chockalingam, P. S., & Jarrett, H. W. (1999). Apocalmodulin. / Physiological Review, / 79, 661-82.
    12. Yap, K. L., Kim, J., Truong, K., Sherman, M., Yuan, T., & Ikura, M. (2000). Calmodulin target database. / Journal of Structural and Functional Genomics, / 1, 8-4. calcium.uhnres.utoronto.ca/ctdb/ctdb/motifs/1-10_motif.html" class="a-plus-plus">http://calcium.uhnres.utoronto.ca/ctdb/ctdb/motifs/1-10_motif.html.
    13. Hoeflich, K. P., & Ikura, M. (2002). Calmodulin in action: diversity in target recognition and activation mechanisms. / Cell, / 108, 739-42. CrossRef
    14. Ishida, H., & Vogel, H. J. (2006). Protein-peptide interaction studies demonstrate the versatility of calmodulin target protein binding. / Protein and Pepidet Letters, / 13, 455-65. CrossRef
    15. Gifford, J. L., Walsh, M. P., & Vogel, H. J. (2007). Structures and metal-ion- binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. / Biochemical Journal, / 405, 199-21. CrossRef
    16. Tanaka, T., Kadowaki, K., Lazarides, E., & Sobue, K. (1991). Ca2+-dependent regulation of the spectrin/actin interaction by calmodulin and protein 4.1. / Journal of Biological Chemistry, / 266, 1134-140.
    17. Takakuwa, Y., & Mohandas, N. (1988). Modulation of erythrocyte membrane material properties by Ca2+ and calmodulin. Implications for their role in regulation of skeletal protein interactions. / Journal of Clinical Investigation, / 82, 394-00. CrossRef
    18. Lombardo, C. R., & Low, P. S. (1994). Calmodulin modulates protein 4.1 binding to human erythrocyte membranes. / Biochimica et Biophysica Acta, / 1196, 139-44. CrossRef
    19. Nunomura, W., Takakuwa, Y., Parra, M., Conboy, J. G., & Mohandas, N. (2000). Ca2+-dependent and Ca2+-independent calmodulin binding sites in erythrocyte protein 4.1. Implications for regulation of protein 4.1 interactions with transmembrane proteins. / Journal of Biological Chemistry, / 275, 6360-367. CrossRef
    20. Nunomura, W., Sasakura, D., Shiba, K., Nakamura, S., Kidokoro, S., & Takakuwa, Y. (2011). Structural stabilization of protein 4.1R FERM domain upon binding to apo-calmodulin: Novel insights into the biological significance of the calcium- independent binding of calmodulin to protein 4.1R. / Biochemical Journal, / 440, 367-74. CrossRef
    21. Han, B. G., Nunomura, W., Takakuwa, Y., Mohandas, N., & Jap, J. K. (2000). Protein 4.1R core domain structure and insights into regulation of cytoskeletal organization. / Nature Structural Biology, / 7, 871-75. CrossRef
    22. Mertens, H. D., & Svergun, D. I. (2010). Structural characterization of proteins and complexes using small-angle X-ray solution scattering. / Journal of Structural Biology, / 172, 128-41. CrossRef
    23. Isozumi, N., Iida, Y., Nakatomi, A., Nemoto, N., Yazawa, M., & Ohki, S. (2011). Conformation of the calmodulin-binding domain of metabotropic glutamate receptor subtype 7 and its interaction with calmodulin. / Journal of Biochemistry, / 149, 463-74. CrossRef
    24. Kitagawa, C., Nakatomi, A., Hwang, D., Osaka, I., Fujimori, H., Kawasaki, H., et al. (2011). Roles of the C-terminal residues of calmodulin in structure and function. / Biophysics, / 7, 35-9. CrossRef
    25. Wetlaufer, D. B. (1962). Ultraviolet spectra of proteins and amino acids. / Advances in Protein Chemistry, / 17, 303-91. CrossRef
    26. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., & Bax, A. (1995). NMR pipe: A multidimensional spectral processing system based on UNIX pipes. / Journal of Biomolecular NMR, / 6, 277-93. CrossRef
    27. Tsalkova, T. N., & Privalov, P. (1985). Thermodynamic study of domain organization in troponin C and calmodulin. / Journal of Molecular Biology, / 181, 533-44. CrossRef
    28. Kidokoro, S., & Wada, A. (1987). Determination of thermodynamic functions from scanning calorimetry data. / Biopolymers, / 26, 213-29. CrossRef
    29. Kidokoro, S., Uedaira, H., & Wada, A. (1988). Determination of thermodynamic functions from scanning calorimetry data II. For the system that includes self-dissociation/association process. / Biopolymers, / 27, 221-25. CrossRef
    30. Nakamura, S., Seki, Y., Katoh, E., & Kidokoro, S. (2011). Thermodynamic and structural properties of the acid molten globule state of horse cytochrome C. / Biochemistry, / 50, 3116-126. CrossRef
    31. Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. / Analitical Chemistry, / 36, 1627-639. CrossRef
    32. Matsushima, N., Hyashi, N., Jinbo, Y., & Izumi, Y. (2000). Ca2+-bound calmodulin forms a compact globular structure on binding four trifluoperazin molecule in solution. / Biochemical Journal, / 347, 211-15. CrossRef
    33. Nunomura, W., Jinbo, Y., Isozumi, N., Ohki, S., Izumi, Y., Matsushima, N., et al. (2013). Novel mechanism of regulation of protein 4.1G binding properties through Ca2+/calmodulin-mediated structural changes. / Cell Biochemistry and Biophysics, / 66, 545-58. CrossRef
    34. Guinier, A., & Fournet, G. (1955). / Small-angle scattering of X-rays. New York: Wiley.
    35. Glatter, O., & Kratky, O. (1982). / Small angle X-ray scattering. London: Academic Press.
    36. Izumi, Y., Watanabe, H., Watanabe, N., Aoyama, A., Jinbo, Y., & Hayashi, N. (2008). Solution X-ray scattering reveals a novel structure of calmodulin complexed with a binding domain peptide from the HIV-1 Matrix Protein p17. / Biochemistry, / 47, 7158-166. CrossRef
    37. Svergun, D. I. (1992). Determination on the regularization parameter in indirect-transform methods using perceptual criteria. / Journal of Applied Crystallography, / 25, 495-03. CrossRef
    38. Hultschig, C., Hecht, H. J., & Frank, R. (2004). Systematic delineation of a calmodulin peptide interaction. / Journal of Molecular Biology, / 343, 559-68. CrossRef
    39. Rhoadsi, A. R., & Friedberg, F. (1997). Sequence motifs for calmodulin recognition. / FASEB Journal, / 11, 331-40.
    40. Nunomura, W., Gascard, P., & Takakuwa, Y. (2011). Insights into the function of the unstructured N-terminal domain of proteins 4.1R and 4.1G in erythropoiesis. / International Journal of Cell Biology. doi:10.1155/2011/943272 . CrossRef
    41. Takakuwa, Y. (2000). Protein 4.1, a multifunctional protein of the erythrocyte membrane skeleton: structure and functions in erythrocytes and nonerythroid cells. / International Journal of Hematology, / 72, 298-09.
    42. Kowluru, R. A., Heidorn, D. B., Edmondson, S. P., Bitensky, M. W., Kowluru, A., Downer, N. W., et al. (1989). Glycation of calmodulin: chemistry and structural and functional consequences. / Biochemistry, / 28, 2220-228. CrossRef
    43. Balog, E. M., Lockamy, E. L., Thomas, D. D., & Ferrington, D. A. (2009). Site-specific methionine oxidation initiates calmodulin degradation by the 20S proteasome. / Biochemistry, / 48, 3005-016. CrossRef
    44. Kosk-Kosicka, D., Bzdega, T., Wawrzynow, A., Scaillet, S., Nemcek, K., & Johnson, J. D. (1990). Erythrocyte Ca2+-ATPase: activation by enzyme oligomerization versus by calmodulin. / Advances in Experimental Medicine and Biology, / 269, 169-74. CrossRef
    45. Meador, W. E., Means, A. R., & Quiocho, F. A. (1993). Modulation of calmodulin plasticity in molecular recognition on the basis of X-ray structures. / Science, / 262, 1718-721. CrossRef
    46. K?ster, S., Pavkov-Keller, T., Kühlbrandt, W., & Yildiz, ?. (2011). Structure of human Na+/H+ exchanger NHE1 regulatory region in complex with calmodulin and Ca2+. / Journal of Biological Chemistry, / 286, 40954-0961. CrossRef
    47. Ikura, M., Kay, L. E., Mrinks, M., & Bax, A. (1991). Triple-resonance multi- dimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: indication of a conformational change in the central helix. / Biochemistry, / 30, 5498-504. CrossRef
    48. Ikura, M., Clore, G. M., Gronenborn, A. M., Zhu, G., Klee, C. B., & Bax, A. (1992). Solution structure of a calmodulin-target peptide complex by multidimensional NMR. / Science, / 256, 632-38. CrossRef
  • 作者单位:Wataru Nunomura (1) (2)
    Noriyoshi Isozumi (3)
    Shigeyoshi Nakamura (4)
    Yuji Jinbo (5)
    Shinya Ohki (3)
    Shun-ichi Kidokoro (4)
    Hideki Wakui (2)
    Yuichi Takakuwa (6)

    1. Center for Geo-Environmental Science, Graduate School of Engineering and Resource Science, Akita University, Tegata-Gakuên 1-1, Akita, 010-8502, Japan
    2. Department of Life Science, Graduate School of Engineering and Resource Science, Akita University, Tegata-Gakuên 1-1, Akita, 010-8502, Japan
    3. Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nōmi, Ishikawa, 923-1292, Japan
    4. Department of Bioengineering, Naga?ka University of Technology, Kamitomi?ka 1603-1, Naga?ka, Niigata, 940-2188, Japan
    5. Graduate School of Science and Engineering, Yamagata University, Jyōnan 4-3-16, Yonezawa, Yamagata, 992-8510, Japan
    6. Department of Biochemistry, Tokyo Women’s Medical University, Kawada 8-1, Shinjuku, Tokyo, 162-8666, Japan
  • ISSN:1559-0283
文摘
Calmodulin (CaM) binds to the FERM domain of 80?kDa erythrocyte protein 4.1R (R30) independently of Ca2+ but, paradoxically, regulates R30 binding to transmembrane proteins in a Ca2+-dependent manner. We have previously mapped a Ca2+-independent CaM-binding site, pep11 (A264KKLWKVCVEHHTFFR), in 4.1R FERM domain and demonstrated that CaM, when saturated by Ca2+ (Ca2+/CaM), interacts simultaneously with pep11 and with Ser185 in A181KKLSMYGVDLHKAKD (pep9), the binding affinity of Ca2+/CaM for pep9 increasing dramatically in the presence of pep11. Based on these findings, we hypothesized that pep11 induced key conformational changes in the Ca2+/CaM complex. By differential scanning calorimetry analysis, we established that the C-lobe of CaM was more stable when bound to pep11 either in the presence or absence of Ca2+. Using nuclear magnetic resonance spectroscopy, we identified 8 residues in the N-lobe and 14 residues in the C-lobe of pep11 involved in interaction with CaM in both of presence and absence of Ca2+. Lastly, Kratky plots, generated by small-angle X-ray scattering analysis, indicated that the pep11/Ca2+/CaM complex adopted a relaxed globular shape. We propose that these unique properties may account in part for the previously described Ca2+/CaM-dependent regulation of R30 binding to membrane proteins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700