Heterogeneity of \({\varvec{\rm d}}{\varvec{N}}/{\varvec{\rm d}}{\varvec{S}}\) Ratios at the Classical HLA Class I Genes over Divergence Time and Across the Allelic Phyloge
详细信息    查看全文
  • 作者:rbara Domingues Bitarello ; Rodrigo dos Santos Francisco…
  • 关键词:Balancing selection ; HLA ; MHC ; $${\mathrm{d}}N/{\mathrm{d}}S$$ d N / d S ; Allelic lineages ; Antigen recognition site ; Divergent allele advantage
  • 刊名:Journal of Molecular Evolution
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:82
  • 期:1
  • 页码:38-50
  • 全文大小:606 KB
  • 参考文献:Albrechtsen A, Moltke I, Nielsen R (2010) Natural selection and the distribution of identity-by-descent in the human genome. Genetics 186(1):295–308PubMed PubMedCentral CrossRef r>Anisimova M, Nielsen R, Yang Z (2003) Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164(3):1229–36PubMed PubMedCentral r>Apps R, Qi Y, Carlson JM, Chen H, Gao X, Thomas R, Yuki Y, Del Prete GQ, Goulder P, Brumme ZL, Brumme CJ, John M, Mallal S, Nelson G, Bosch R, Heckerman D, Stein JL, Soderberg Ka, Moody MA, Denny TN, Zeng X, Fang J, Moffett A, Lifson JD, Goedert JJ, Buchbinder S, Kirk GD, Fellay J, McLaren P, Deeks SG, Pereyra F, Walker B, Michael NL, Weintrob A, Wolinsky S, Liao W, Carrington M (2013) Influence of HLA-C expression level on HIV control. Science 340(6128):87–91r>Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329(6139):506–12PubMed CrossRef r>Chelvanayagam G (1996) A roadmap for HLA-A, HLA-B, and HLA-C peptide binding specificities. Immunogenetics 45(1):15–26PubMed CrossRef r>Dean M, Carrington M, O’Brien SJ (2002) Balanced polymorphism selected by genetic versus infectious human disease. Annu Rev Genom Hum Genet 3:263–292CrossRef r>Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256(5512):50–52PubMed CrossRef r>Dos Reis M, Yang Z (2013) Why do more divergent sequences produce smaller nonsynonymous/synonymous rate ratios in pairwise sequence comparisons? Genetics 195(1):195–204PubMed PubMedCentral CrossRef r>Felsenstein J (1989) PHYLIP-phylogeny inference package (version 3.2). Cladistics 5:164–166r>Francisco RS, Buhler S, Nunes JM, Bitarello BD, França GS, Meyer D, Sanchez-Mazas A (2015) HLA supertype variation across populations: new insights into the role of natural selection in the evolution of HLA-A and HLA-B polymorphisms. Immunogenetics 67(11–12):651–663. doi:10.​1007/​s00251-015-0875-9 CrossRef r>Garrigan D, Hedrick PW (2003) Detecting adaptive molecular polymorphism : lessons from the MHC. Evolution 57(8):1707–1722PubMed CrossRef r>Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11(5):725–736PubMed r>Hedrick PW (2002) Pathogen resistance and genetic variation at MHC loci. Evolution 56(10):1902–1908PubMed CrossRef r>Hedrick PW, Thomson G (1983) Evidence for balancing selection at HLA. Genetics 104(3):449–56PubMed PubMedCentral r>Henn B, Botigué LR, Bustamante C, Clark AG, Gravel S (2015) Estimating the mutation load in human genomes. Nat Rev Genetics 16:333–343PubMed CrossRef r>Hilton HG, Guethlein LA, Goyos A, Nemat-Gorgani N, Bushnell DA, Norman PJ, Parham P (2015) Polymorphic HLA-C receptors balance the functional characteristics of KIR haplotypes. J Immunol 195:3160–3170PubMed CrossRef r>Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335(6186):167–170PubMed CrossRef r>Hughes AL, Nei M (1989) Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci USA 86(3):958–962PubMed PubMedCentral CrossRef r>Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex of vertebrates. Annu Rev Genet 32:415–435PubMed CrossRef r>Huttley G, Smith MW, Carrington M, O’Brien S (1999) A scan for linkage disequilibrium accross the human genome. Genetics 152(4):1711–1722PubMed PubMedCentral r>Klein J, Sato A (2000) The HLA system first of two parts. Adv Immunol 343(10):702–709r>Kryazhimskiy S, Plotkin JB (2008) The population genetics of dN/dS. PLoS Genet 4(12):10CrossRef r>Lenz T, Mueller B, Trillmich F, Wolf JBW (2013) Divergent allele advantage at MHC-DRB through direct and maternal genotypic effects and its consequences for allele pool composition and mating. Proc R Soc B 280:20130714PubMed PubMedCentral CrossRef r>Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26(19):2462–3PubMed PubMedCentral CrossRef r>Meyer D, Single RM, Mack SJ, Erlich HA, Thomson G (2006) Signatures of demographic history and natural selection in the human major histocompatibility complex loci. Genetics 173(4):2121–2142PubMed PubMedCentral CrossRef r>Meyer D, Thomson G (2001) How selection shapes variation of the human major histocompatibility complex: a review. Ann Hum Genet 65(1):1–26PubMed CrossRef r>Mugal CF, Wolf JBW, Kaj I (2014) Why time matters: codon evolution and the temporal dynamics of dN/dS. Mol Biol Evol 31(1):212–231PubMed PubMedCentral CrossRef r>Penn DJ, Damjanovich K, Potts WK (2002) MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc Natl Acad Sci USA 99(17):260–264CrossRef r>Pond SLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21(5):676–679PubMed CrossRef r>Prugnolle F, Manica A, Charpentier M, Guégan JF, Guernier V, Balloux F (2005) Pathogen-driven selection and worldwide HLA class I diversity. Curr Biol 15(11):1022–7PubMed CrossRef r>Richman A (2000) Evolution of balanced genetic polymorphism. Mol Ecol 9(12):1953–63PubMed CrossRef r>Robinson J, Halliwell JA, McWilliam H, Lopez R, Parham P, Marsh SGE (2013) The IMGT/HLA database. Nucleic Acids Res 41:D1222–D1227PubMed PubMedCentral CrossRef r>Rocha EPC, Smith JM, Hurst LD, Holden MTG, Cooper JE, Smith NH, Feil EJ (2006) Comparisons of dN/dS are time dependent for closely related bacterial genomes. J Theor Biol 239(2):226–235PubMed CrossRef r>Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMed r>Sidney J, Grey HM, Kubo RT, Sette A (1996) Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs. Immunol Today 17(6):261–6PubMed CrossRef r>Single RM, Martin MP, Gao X, Meyer D, Yeager M, Kidd JR, Kidd K, Carrington M (2007) Global diversity and evidence for coevolution of KIR and HLA. Nat Genet 9:1114–1119CrossRef r>Slade R, McCallum H (1992) Overdominant vs. frequency-dependent selection at MHC loci. Genetics 132:861–864PubMed PubMedCentral r>Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc Biol Sci 277(1684):979–88PubMed PubMedCentral CrossRef r>Stolestki N, Eyre-Walker A (2011) The positive correlation between dN/dS and dS in mammals is due to runs of adjacent substitutions. Mol Biol Evol 28(4):1371–1380CrossRef r>Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124(4):967–978PubMed PubMedCentral r>Takahata N, Satta Y (1998) Footprints of intragenic recombination at HLA loci. Immunogenetics 47(6):430–441PubMed CrossRef r>Templeton AR (1996) Contingency tests of neutrality using intra/interspecific gene trees: the rejection of neutrality for the evolution of the mitochondrial Cytochrome Oxidase II gene in the hominoid primates. Genetics 144(3):1263–1270PubMed PubMedCentral r>The 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65r>Wakeland EK, Boehme S, She JX, Cc Lu, Mclndoe RA, Cheng I, Ye Y, Potts WK (1990) Ancestral polymorphisms of MHC class II genes : divergent allele advantage. Immunol Res 9:115–122PubMed CrossRef r>Wolf JBW, Künstner A, Nam K, Jakobsson M, Ellegren H (2009) Nonlinear dynamics of nonsynonymous (dN) and synonymous (dS) substitution rates affects inference of selection. Genome Biol Evol 1:308–319PubMed PubMedCentral CrossRef r>Yang Z (2006) Computational molecular evolution. Oxford University Press, OxfordCrossRef r>Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591PubMed CrossRef r>Yang Z, Swanson WJ (2002) Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol Biol Evol 19(1):49–57PubMed CrossRef r>Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22(4):1107–1118PubMed CrossRef r>Yasukochi Y, Satta Y (2014) Nonsynonymous substitution rate heterogeneity in the peptide-binding region among different HLA-DRB1 lineages in humans. G3 (Bethesda) 4:1217–1226CrossRef r>
  • 作者单位:Bárbara Domingues Bitarello (1) r> Rodrigo dos Santos Francisco (1) r> Diogo Meyer (1) r>r>1. Departament of Genetics and Evolutionary Biology, University of São Paulo, Rua do Matão, 277, São Paulo, Brazil r>
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciencesr>Cell Biologyr>Microbiologyr>Plant Sciencesr>
  • 出版者:Springer New York
  • ISSN:1432-1432
文摘
The classical class I HLA loci of humans show an excess of nonsynonymous with respect to synonymous substitutions at codons of the antigen recognition site (ARS), a hallmark of adaptive evolution. Additionally, high polymporphism, linkage disequilibrium, and disease associations suggest that one or more balancing selection regimes have acted upon these genes. However, several questions about these selective regimes remain open. First, it is unclear if stronger evidence for selection on deep timescales is due to changes in the intensity of selection over time or to a lack of power of most methods to detect selection on recent timescales. Another question concerns the functional entities which define the selected phenotype. While most analyses focus on selection acting on individual alleles, it is also plausible that phylogenetically defined groups of alleles (“lineages”) are targets of selection. To address these questions, we analyzed how \({\mathrm{d}}N/{\mathrm{d}}S\) (\(\omega\)) varies with respect to divergence times between alleles and phylogenetic placement (position of branches). We find that \(\omega\) for ARS codons of class I HLA genes increases with divergence time and is higher for inter-lineage branches. Throughout our analyses, we used non-selected codons to control for possible effects of inflation of \(\omega\) associated to intra-specific analysis, and showed that our results are not artifactual. Our findings indicate the importance of considering the timescale effect when analysing \(\omega\) over a wide spectrum of divergences. Finally, our results support the divergent allele advantage model, whereby heterozygotes with more divergent alleles have higher fitness than those carrying similar alleles. Keywords Balancing selection HLA MHC \({\mathrm{d}}N/{\mathrm{d}}S\) Allelic lineages Antigen recognition site Divergent allele advantage

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700