Beyond complete positivity
详细信息    查看全文
  • 作者:Jason M. Dominy ; Daniel A. Lidar
  • 关键词:Complete positivity ; Quantum maps ; Non ; completely positive dynamics ; Quantum subsystem dynamics
  • 刊名:Quantum Information Processing
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:15
  • 期:4
  • 页码:1349-1360
  • 全文大小:469 KB
  • 参考文献:1.Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)MATH
    2.Stinespring, W.F.: Positive functions on \({C}^{*}\) -algebras. Proc. Am. Math. Soc. 6(2), 211–216 (1955)MathSciNet MATH
    3.Kraus, K.: States, Effects, and Operations. Springer, Berlin (1983)MATH
    4.As a reminder, if \({\cal H}\) and \({\cal K}\) are Hilbert spaces, \({\cal R}\subset {\cal B}({\cal H})\) is a \({\mathbb{C}}\) -linear subspace spanned by states, and \(F:{\cal R}\rightarrow {\cal B}({\cal K})\) is \({\mathbb{C}}\) -linear, then \(F\) is completely positive if \(F\otimes \text{ id } :{\cal R}\otimes {\cal B}({\cal H}_{\text{ W }}) \rightarrow {\cal B}({\cal K})\otimes {\cal B}({\cal H}_{\text{ W }})\) is a positive map for all finite dimensional \({\cal H}_{\text{ W }}\)
    5.Rodríguez-Rosario, C.A., Modi, K., Kuah, A., Shaji, A., Sudarshan, E.C.G.: Completely positive maps and classical correlations. J. Phys. A 41(20), 205301 (2008)ADS MathSciNet CrossRef MATH
    6.Shabani, A., Lidar, D.A.: Vanishing quantum discord is necessary and sufficient for completely positive maps. Phys. Rev. Lett. 102(10), 100402 (2009)ADS CrossRef
    7.Rebentrost, P., Chakraborty, R., Aspuru-Guzik, A.: Non-Markovian quantum jumps in excitonic energy transfer. J. Chem. Phys. 131(18), 184102 (2009)ADS CrossRef
    8.Witzel, W.M., Das Sarma, S.: Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: spectral diffusion of localized electron spins in the nuclear solid-state environment. Phys. Rev. B 74, 035322 (2006)ADS CrossRef
    9.Liu, B.-H., Li, L., Huang, Y.-F., Li, C.-F., Guo, G.-C., Laine, E.-M., Breuer, H.-P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7(12), 931–934 (2011)CrossRef
    10.Štelmachovič, P., Bužek, V.: Dynamics of open quantum systems initially entangled with environment: beyond the Kraus representation. Phys. Rev. A 64, 062106 (2001)ADS CrossRef
    11.Salgado, D., Sanchez-Gomez, J.L.: Comment on “dynamics of open quantum systems initially entangled with environment: beyond the kraus representation” [pra 64, 062106 (2001)]. arXiv:​quant-ph/​0211164 (2002)
    12.Hayashi, H., Kimura, G., Ota, Y.: Kraus representation in the presence of initial correlations. Phys. Rev. A 67, 062109 (2003)ADS CrossRef
    13.Jordan, T.F., Shaji, A., Sudarshan, E.C.G.: Dynamics of initially entangled open quantum systems. Phys. Rev. A 70, 052110 (2004)ADS MathSciNet CrossRef MATH
    14.Salgado, D., Sánchez-Gómez, J.L., Ferrero, M.: Evolution of any finite open quantum system always admits a Kraus-type representation, although it is not always completely positive. Phys. Rev. A 70(5), 054102 (2004)ADS CrossRef
    15.Shaji, A., Sudarshan, E.C.G.: Who’s afraid of not completely positive maps? Phys. Lett. A 341(1–4), 48–54 (2005)ADS MathSciNet CrossRef MATH
    16.Carteret, H.A., Terno, D.R., Życzkowski, K.: Dynamics beyond completely positive maps: some properties and applications. Phys. Rev. A 77, 042113 (2008)ADS MathSciNet CrossRef
    17.Shabani, A., Lidar, D.A.: Maps for general open quantum systems and a theory of linear quantum error correction. Phys. Rev. A 80(1), 012309 (2009)ADS MathSciNet CrossRef
    18.Rodríguez-Rosario, C.A., Modi, K., Aspuru-Guzik, A.: Linear assignment maps for correlated system-environment states. Phys. Rev. A 81(1), 012313 (2010)ADS CrossRef
    19.Devi, A.R.U., Rajagopal, A.K., Sudha, : Open-system quantum dynamics with correlated initial states, not completely positive maps, and non-Markovianity. Phys. Rev. A 83, 022109 (2011)ADS CrossRef
    20.Modi, K., Rodríguez-Rosario, C.A., Aspuru-Guzik, A.: Positivity in the presence of initial system-environment correlation. Phys. Rev. A 86, 064102 (2012)ADS CrossRef
    21.Brodutch, A., Datta, A., Modi, K., Rivas, Á., Rodríguez-Rosario, C.A.: Vanishing quantum discord is not necessary for completely positive maps. Phys. Rev. A 87, 042301 (2013)ADS CrossRef
    22.McCracken, J.M.: Hamiltonian composite dynamics can almost always lead to negative reduced dynamics. Phys. Rev. A 88, 022103 (2013)ADS CrossRef
    23.McCracken, J.M.: Quantum channel negativity as a measure of system-bath coupling and correlation. Phys. Rev. A 88, 032103 (2013)ADS CrossRef
    24.Buscemi, F.: Complete positivity, Markovianity, and the quantum data-processing inequality, in the presence of initial system-environment correlations. Phys. Rev. Lett. 113, 140502 (2014)ADS CrossRef
    25.Tong, D.M.: Completely positive maps within the framework of direct-sum decomposition of state space. Phys. Rev. A 90, 012305 (2014)ADS CrossRef
    26.Dominy, J.M., Shabani, A., Lidar, D.A.: A general framework for complete positivity. Quantum Inf. Process. 15(1), 465–494 (2016)
    27.Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, England (2000)MATH
    28.Mark Wilde, M.: Quantum Information Theory. Cambridge University Press, Cambride, UK (2013)CrossRef MATH
    29.Kraus, K.: General state changes in quantum theory. Ann. Phys. 64(2), 311–335 (1971)ADS MathSciNet CrossRef MATH
    30.Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. J. Math. Phys. 17(5), 821–825 (1976)ADS MathSciNet CrossRef
    31.Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)ADS MathSciNet CrossRef MATH
    32.Alicki, R., Lendi, K.: Quantum Dynamical Semigroups and Applications. Lecture Notes in Physics, vol. 286. Springer, Berlin (1987)
    33.Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)ADS MathSciNet CrossRef
    34.Laine, E.-M., Piilo, J., Breuer, H.-P.: Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81, 062115 (2010)ADS CrossRef
    35.Breuer, H.-P.: Foundations and measures of quantum non-Markovianity. J. Phys. B: At. Mol. Opt. Phys. 45(15), 154001 (2012)ADS CrossRef
    36.Rodríguez-Rosario, C.A., Modi, K., Mazzola, L., Aspuru-Guzik, A.: Unification of witnessing initial system-environment correlations and witnessing non-Markovianity. EPL (Europhys. Lett.) 99(2), 20010 (2012)ADS CrossRef
    37.Bylicka, B., Chruściński, D., Maniscalco, S.: Non-markovianity and reservoir memory of quantum channels: a quantum information theory perspective. Sci. Rep. 4, 5720 (2014)CrossRef
    38.Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-Markovian quantum dynamics. Phys. Rev. Lett. 101, 150402 (2008)ADS MathSciNet CrossRef MATH
    39.Preskill, J.: Quantum Computation Lecture Notes Ch. 3: Foundations of Quantum Theory II: Measurement and Evolution. http://​www.​theory.​caltech.​edu/​people/​preskill/​ph229/​notes/​chap3.​pdf (1998)
    40.Pechukas, P.: Reduced dynamics need not be completely positive. Phys. Rev. Lett. 73(8), 1060–1062 (1994)ADS MathSciNet CrossRef MATH
    41.Nonlinear maps might also arise if one considers a nonconvex set of admissible initial system-bath states. This is developed further in [26], but a detailed analysis of the nonlinear case remains to be done
    42.Alicki, R.: Comment on reduced dynamics need not be completely positive. Phys. Rev. Lett. 75(16), 3020–3020 (1995)ADS CrossRef
    43.Pechukas, P.: Pechukas replies. Phys. Rev. Lett. 75(16), 3021–3021 (1995)ADS CrossRef
    44.Fonseca Romero, K.M., Talkner, P., Hänggi, P.: Is the dynamics of open quantum systems always linear? Phys. Rev. A 69, 052109 (2004)ADS CrossRef
    45.Note that this formulation includes no consideration as to how or why the initial state came to be in \({\cal D}_{\text{ SB }}\cap {\cal V}\) ; it only models how the subsystem state changes from this point forward. If one wishes to also model state preparation or other prior evolution, the map(s) representing those prior steps should be precomposed with \(\Psi _{U}^{{\cal V}}\) (and will also strongly influence the choice of \({\cal V}\) ) [42]
    46.Takai, H., Yamada, H.: A note on the dilation theorems. Proc. Jpn. Acad. 48(4), 216–220 (1972)MathSciNet CrossRef MATH
    47.Schäffer, J.J.: On unitary dilations of contractions. Proc. Am. Math. Soc. 6(2), 322 (1955)MathSciNet CrossRef MATH
    48.Breuer, H.-P., Kappler, B., Petruccione, F.: Stochastic wave-function method for non-Markovian quantum master equations. Phys. Rev. A 59, 1633–1643 (1999)ADS CrossRef
    49.Breuer, H.-P.: Genuine quantum trajectories for non-Markovian processes. Phys. Rev. A 70, 012106 (2004)ADS CrossRef
    50.Budini, A.A.: Embedding non-Markovian quantum collisional models into bipartite Markovian dynamics. Phys. Rev. A 88, 032115 (2013)ADS CrossRef
    51.Hush, M.R., Lesanovsky, I., Garrahan, J.P.: Generic map from non-Lindblad to Lindblad master equations. Phys. Rev. A 91, 032113 (2015)ADS CrossRef
    52.Dajka, J., Łuczka, J.: Distance growth of quantum states due to initial system-environment correlations. Phys. Rev. A 82, 012341 (2010)ADS CrossRef
    53.Dajka, J., Łuczka, J.: The trace distance and linear entropy of qubit states: the role of initial qubit-environment correlations. Rep. Math. Phys. 70(2), 193–204 (2012)ADS MathSciNet CrossRef MATH
    54.Lindblad, G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40, 147–151 (1975)ADS MathSciNet CrossRef MATH
    55.Uhlmann, A.: Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory. Commun. Math. Phys. 54(1), 21–32 (1977)ADS MathSciNet CrossRef MATH
    56.Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14(12), 1938–1941 (1973)ADS MathSciNet CrossRef
  • 作者单位:Jason M. Dominy (1) (4)
    Daniel A. Lidar (1) (2) (3) (4)

    1. Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
    4. Center for Quantum Information Science & Technology, University of Southern California, Los Angeles, CA, 90089, USA
    2. Department of Physics, University of Southern California, Los Angeles, CA, 90089, USA
    3. Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Mathematics
    Engineering, general
    Computer Science, general
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1573-1332
文摘
We provide a general and consistent formulation for linear subsystem quantum dynamical maps, developed from a minimal set of postulates, primary among which is a relaxation of the usual, restrictive assumption of uncorrelated initial system-bath states. We describe the space of possibilities admitted by this formulation, namely that, far from being limited to only completely positive (CP) maps, essentially any \({\mathbb {C}}\)-linear, Hermiticity-preserving, trace-preserving map can arise as a legitimate subsystem dynamical map from a joint unitary evolution of a system coupled to a bath. The price paid for this added generality is a trade-off between the set of admissible initial states and the allowed set of joint system-bath unitary evolutions. As an application, we present a simple example of a non-CP map constructed as a subsystem dynamical map that violates some fundamental inequalities in quantum information theory, such as the quantum data processing inequality.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700