Improving the preclinical models for the study of chemotherapy-induced cardiotoxicity: a Position Paper of the Italian Working Group on Drug Cardiotoxicity and Cardioprotection
详细信息    查看全文
  • 作者:Rosalinda Madonna ; Christian Cadeddu ; Martino Deidda ; Donato Mele…
  • 关键词:Cancer therapy ; induced cardiac injury ; Preclinical models ; Cardioprotection ; Mitochondria ; Neuregulin ; 1 ; Oxidative stress ; Statins ; Beta ; blockers ; ACE inhibitors ; Cardiac stem cells
  • 刊名:Heart Failure Reviews
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:20
  • 期:5
  • 页码:621-631
  • 全文大小:437 KB
  • 参考文献:1.Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97:2869鈥?879PubMed
    2.Pinder MC, Duan Z, Goodwin JS, Hortobagyi GN, Giordano SH (2007) Congestive heart failure in older women treated with adjuvant anthracycline chemotherapy for breast cancer. J Clin Oncol 25:3808鈥?815PubMed
    3.Ewer SM, Ewer MS (2008) Cardiotoxicity profile of trastuzumab. Drug Saf 31:459鈥?67PubMed
    4.Sawyer DB, Zuppinger C, Miller TA, Eppenberger HM, Suter TM (2002) Modulation of anthracycline-induced myofibrillar disarray in rat ventricular myocytes by neuregulin-1beta and anti-erbB2: potential mechanism for trastuzumab-induced cardiotoxicity. Circulation 105:1551鈥?554PubMed
    5.Outomuro D, Grana DR, Azzato F, Milei J (2007) Adriamycin-induced myocardial toxicity: new solutions for an old problem? Int J Cardiol 117:6鈥?5PubMed
    6.Wouters KA, Kremer LC, Miller TL, Herman EH, Lipshultz SE (2005) Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol 131:561鈥?78PubMed
    7.Olson RD, Mushlin PS (1990) Doxorubicin cardiotoxicity: analysis of prevailing hypotheses. FASEB J 4:3076鈥?086PubMed
    8.Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185鈥?29PubMed
    9.Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y et al (2007) Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res 67:8839鈥?846PubMed
    10.Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF et al (2012) Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18:1639鈥?642PubMed
    11.Pointon AV, Walker TM, Phillips KM, Luo J, Riley J, Zhang SD et al (2010) Doxorubicin in vivo rapidly alters expression and translation of myocardial electron transport chain genes, leads to ATP loss and caspase 3 activation. PLoS One 5:e12733PubMed Central PubMed
    12.Gonzalvez F, Gottlieb E (2007) Cardiolipin: setting the beat of apoptosis. Apoptosis 12:877鈥?85PubMed
    13.Fisher PW, Salloum F, Das A, Hyder H, Kukreja RC (2005) Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation 111:1601鈥?610PubMed
    14.Di X, Gennings C, Bear HD, Graham LJ, Sheth CM, White KL Jr et al (2010) Influence of the phosphodiesterase-5 inhibitor, sildenafil, on sensitivity to chemotherapy in breast tumor cells. Breast Cancer Res Treat 124:349鈥?60PubMed
    15.Penna C, Mancardi D, Rastaldo R, Losano G, Pagliaro P (2007) Intermittent activation of bradykinin B2 receptors and mitochondrial KATP channels trigger cardiac postconditioning through redox signaling. Cardiovasc Res 75:168鈥?77PubMed
    16.Pentassuglia L, Sawyer DB (2009) The role of neuregulin-1 beta/erbb signaling in the heart. Exp Cell Res 315:627鈥?37PubMed Central PubMed
    17.Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341鈥?54PubMed
    18.Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177鈥?82PubMed
    19.Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783鈥?92PubMed
    20.Suter TM, Ewer MS (2013) Cancer drugs and the heart: importance and management. Eur Heart J 34:1102鈥?111PubMed
    21.Ewer MS, Ewer SM (2010) Troponin I provides insight into cardiotoxicity and the anthracycline-trastuzumab interaction. J Clin Oncol 28:3901鈥?904PubMed
    22.Odiete O, Hill MF, Sawyer DB (2012) Neuregulin in cardiovascular development and disease. Circ Res 111:1376鈥?385PubMed Central PubMed
    23.Ky B, Vejpongsa P, Yeh ET, Force T, Moslehi JJ (2013) Emerging paradigms in cardiomyopathies associated with cancer therapies. Circ Res 113:754鈥?64PubMed Central PubMed
    24.Bersell K, Arab S, Haring B, Kuhn B (2009) Neuregulin-1/erbb4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138:257鈥?70PubMed
    25.Force T, Krause DS, Van Etten RA (2007) Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer 7:332鈥?44PubMed
    26.De Keulenaer GW, Doggen K, Lemmens K (2010) The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy. Circ Res 106:35鈥?6PubMed
    27.Tocchetti CG, Ragone G, Coppola C, Rea D, Piscopo G, Scala S et al (2012) Detection, monitoring, and management of trastuzumab-induced left ventricular dysfunction: an actual challenge. Eur J Heart Fail 14:130鈥?37PubMed
    28.Eschenhagen T, Force T, Ewer MS, de Keulenaer GW, Suter TM, Anker SD et al (2012) Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 13:1鈥?0
    29.Crone SA, Zhao YY, Fan L, Gu Y, Minamisawa S, Liu Y et al (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8:459鈥?65PubMed
    30.Ewer MS, Vooletich MT, Durand JB, Woods ML, Davis JR, Valero V et al (2005) Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol 23:7820鈥?826PubMed
    31.Timolati F, Ott D, Pentassuglia L, Giraud MN, Perriard JC, Suter TM et al (2006) Neuregulin-1 beta attenuates doxorubicin-induced alterations of excitation-contraction coupling and reduces oxidative stress in adult rat cardiomyocytes. J Mol Cell Cardiol 41:845鈥?54PubMed
    32.Schmidinger M, Zielinski CC, Vogl UM, Bojic A, Bojic M, Schukro C et al (2008) Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 26:5204鈥?212PubMed
    33.Welti J, Loges S, Dimmeler S, Carmeliet P (2013) Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest 123:3190鈥?200PubMed Central PubMed
    34.Cheng H, Force T (2010) Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circ Res 106:21鈥?4PubMed
    35.Tocchetti CG, Gallucci G, Coppola C, Piscopo G, Cipresso C, Maurea C et al (2013) The emerging issue of cardiac dysfunction induced by antineoplastic angiogenesis inhibitors. Eur J Heart Fail 15:482鈥?89PubMed
    36.Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182鈥?186PubMed
    37.Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT et al (2012) Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO clinical practice guidelines. Ann Oncol 23(Suppl 7):vii155鈥搗ii166PubMed
    38.Marone G, Granata F (2014) Angiogenesis, lymphangiogenesis and clinical implications. Preface. Chem Immunol Allergy 99:XI鈥揦IIPubMed
    39.Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335鈥?342PubMed
    40.Miller KD, Chap LI, Holmes FA, Cobleigh MA, Marcom PK, Fehrenbacher L et al (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23:792鈥?99PubMed
    41.Gresset S, Westermeier P, Rademacher S, Ouzunova M, Presterl T, Westhoff P et al (2010) Stable carbon isotope discrimination is under genetic control in the C4 species maize with several genomic regions influencing trait expression. Plant Physiol 164:131鈥?43
    42.Chintalgattu V, Ai D, Langley RR, Zhang J, Bankson JA, Shih TL et al (2010) Cardiomyocyte PDGFR-beta signaling is an essential component of the mouse cardiac response to load-induced stress. J Clin Invest 120:472鈥?84PubMed Central PubMed
    43.Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L et al (2007) Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 370:2011鈥?019PubMed Central PubMed
    44.Khakoo AY, Kassiotis CM, Tannir N, Plana JC, Halushka M, Bickford C et al (2008) Heart failure associated with sunitinib malate: a multitargeted receptor tyrosine kinase inhibitor. Cancer 112:2500鈥?508PubMed
    45.Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O et al (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115鈥?24PubMed
    46.Telli ML, Witteles RM, Fisher GA, Srinivas S (2008) Cardiotoxicity associated with the cancer therapeutic agent sunitinib malate. Ann Oncol 19:1613鈥?618PubMed
    47.Hasinoff BB, Patel D (2010) The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro. Toxicol Appl Pharmacol 249:132鈥?39PubMed
    48.Anisimov A, Alitalo A, Korpisalo P, Soronen J, Kaijalainen S, Leppanen VM et al (2009) Activated forms of VEGF-C and VEGF-D provide improved vascular function in skeletal muscle. Circ Res 104:1302鈥?312PubMed Central PubMed
    49.Loges S, Roncal C, Carmeliet P (2009) Development of targeted angiogenic medicine. J Thromb Haemost 7:21鈥?3PubMed
    50.Izumiya Y, Shiojima I, Sato K, Sawyer DB, Colucci WS, Walsh K (2006) Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension 47:887鈥?93PubMed Central PubMed
    51.Levy BI (2006) Microvascular plasticity and experimental heart failure. Hypertension 47:827鈥?29PubMed
    52.De Boer RA, Pinto YM, Van Veldhuisen DJ (2003) The imbalance between oxygen demand and supply as a potential mechanism in the pathophysiology of heart failure: the role of microvascular growth and abnormalities. Microcirculation 10:113鈥?26PubMed
    53.Kerkela R, Woulfe KC, Durand JB, Vagnozzi R, Kramer D, Chu TF et al (2009) Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase. Clin Transl Sci 2:15鈥?5PubMed Central PubMed
    54.Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98鈥?02PubMed Central PubMed
    55.Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A et al (2007) Human cardiac stem cells. Proc Natl Acad Sci USA 104:14068鈥?4073PubMed Central PubMed
    56.De Angelis A, Piegari E, Cappetta D, Marino L, Filippelli A, Berrino L et al (2010) Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation 121:276鈥?92PubMed Central PubMed
    57.Fazel S, Cimini M, Chen L, Li S, Angoulvant D, Fedak P et al (2006) Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest 116:1865鈥?877PubMed Central PubMed
    58.Ladas EJ, Jacobson JS, Kennedy DD, Teel K, Fleischauer A, Kelly KM (2004) Antioxidants and cancer therapy: a systematic review. J Clin Oncol 22:517鈥?28PubMed
    59. van Dalen EC, Caron HN, Dickinson HO, Kremer LC (2008) Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev (2):CD003917. doi:10.鈥?002/鈥?4651858.鈥婥D003917.鈥媝ub3
    60.Huelsenbeck J, Henninger C, Schad A, Lackner KJ, Kaina B, Fritz G (2011) Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity. Cell Death Dis 2:e190PubMed Central PubMed
    61.Riad A, Bien S, Westermann D, Becher PM, Loya K, Landmesser U et al (2009) Pretreatment with statin attenuates the cardiotoxicity of doxorubicin in mice. Cancer Res 69:695鈥?99PubMed
    62.Seicean S, Seicean A, Plana JC, Budd GT, Marwick TH (2012) Effect of statin therapy on the risk for incident heart failure in patients with breast cancer receiving anthracycline chemotherapy: an observational clinical cohort study. J Am Coll Cardiol 60:2384鈥?390PubMed
    63.Acar Z, Kale A, Turgut M, Demircan S, Durna K, Demir S et al (2011) Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy. J Am Coll Cardiol 58:988鈥?89PubMed
    64.Scott JM, Khakoo A, Mackey JR, Haykowsky MJ, Douglas PS, Jones LW (2011) Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation 124:642鈥?50PubMed Central PubMed
    65.Jones LW, Eves ND, Haykowsky M, Freedland SJ, Mackey JR (2009) Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncol 10:598鈥?05PubMed
    66.Weijl NI, Elsendoorn TJ, Lentjes EG, Hopman GD, Wipkink-Bakker A, Zwinderman AH et al (2004) Supplementation with antioxidant micronutrients and chemotherapy-induced toxicity in cancer patients treated with cisplatin-based chemotherapy: a randomised, double-blind, placebo-controlled study. Eur J Cancer 40:1713鈥?723PubMed
    67.Giovannucci E, Chan AT (2010) Role of vitamin and mineral supplementation and aspirin use in cancer survivors. J Clin Oncol 28:4081鈥?085PubMed Central PubMed
    68.Hardy ML (2008) Dietary supplement use in cancer care: help or harm. Hematol Oncol Clin N Am 22:581鈥?17
    69.Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G et al (2010) Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 55:213鈥?20PubMed
    70.Okumura K, Jin D, Takai S, Miyazaki M (2002) Beneficial effects of angiotensin-converting enzyme inhibition in adriamycin-induced cardiomyopathy in hamsters. Jpn J Pharmacol 88:183鈥?88PubMed
    71.Tokudome T, Mizushige K, Noma T, Manabe K, Murakami K, Tsuji T et al (2000) Prevention of doxorubicin (adriamycin)-induced cardiomyopathy by simultaneous administration of angiotensin-converting enzyme inhibitor assessed by acoustic densitometry. J Cardiovasc Pharmacol 36:361鈥?68PubMed
    72.Lopez-Sendon J, Swedberg K, McMurray J, Tamargo J, Maggioni AP, Dargie H et al (2004) Expert consensus document on angiotensin converting enzyme inhibitors in cardiovascular disease. The task force on ACE-inhibitors of the European Society of Cardiology. Eur Heart J 25:1454鈥?470PubMed
    73.Cernecka H, Ochodnicka-Mackovicova K, Kucerova D, Kmecova J, Nemcekova V, Doka G et al (2013) Enalaprilat increases PPARbeta/delta expression, without influence on PPARalpha and PPARgamma, and modulate cardiac function in sub-acute model of daunorubicin-induced cardiomyopathy. Eur J Pharmacol 714:472鈥?77PubMed
    74.Soga M, Kamal FA, Watanabe K, Ma M, Palaniyandi S, Prakash P et al (2006) Effects of angiotensin II receptor blocker (candesartan) in daunorubicin-induced cardiomyopathic rats. Int J Cardiol 110:378鈥?85PubMed
    75.Nakamae H, Tsumura K, Terada Y, Nakane T, Nakamae M, Ohta K et al (2005) Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer 104:2492鈥?498PubMed
    76.Shi Y, Moon M, Dawood S, McManus B, Liu PP (2011) Mechanisms and management of doxorubicin cardiotoxicity. Herz 36:296鈥?05PubMed
    77.Bovelli D, Plataniotis G, Roila F (2010) Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: ESMO clinical practice guidelines. Ann Oncol 21(Suppl 5):v277鈥搗282
    78.Seicean S, Seicean A, Alan N, Plana JC, Budd GT, Marwick TH (2013) Cardioprotective effect of beta-adrenoceptor blockade in patients with breast cancer undergoing chemotherapy: follow-up study of heart failure. Circ Heart Fail 6:420鈥?26PubMed
    79.Kaya MG, Ozkan M, Gunebakmaz O, Akkaya H, Kaya EG, Akpek M et al (2013) Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study. Int J Cardiol 167:2306鈥?310PubMed
    80.Oliva S, Cioffi G, Frattini S, Simoncini EL, Faggiano P, Boccardi L et al (2012) Administration of angiotensin-converting enzyme inhibitors and beta-blockers during adjuvant trastuzumab chemotherapy for nonmetastatic breast cancer: marker of risk or cardioprotection in the real world? Oncologist 17:917鈥?24PubMed Central PubMed
    81.Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A et al (2006) Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol 48:2258鈥?262PubMed
    82.Bosch X, Rovira M, Sitges M, Domenech A, Ortiz-Perez JT, de Caralt TM et al (2013) Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol 61:2355鈥?362PubMed
    83.Georgakopoulos P, Roussou P, Matsakas E, Karavidas A, Anagnostopoulos N, Marinakis T et al (2012) Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: a prospective, parallel-group, randomized, controlled study with 36-month follow-up. Cardiology 123:240鈥?47
    84.Kim IM, Tilley DG, Chen J, Salazar NC, Whalen EJ, Violin JD et al (2008) Beta-blockers alprenolol and carvedilol stimulate beta-arrestin-mediated EGFR transactivation. Proc Natl Acad Sci USA 105:14555鈥?4560PubMed Central PubMed
    85.Zhang X, Szeto C, Gao E, Tang M, Jin J, Fu Q et al (2013) Cardiotoxic and cardioprotective features of chronic beta-adrenergic signaling. Circ Res 112:498鈥?09PubMed Central PubMed
    86.Nakamura K, Kusano K, Nakamura Y, Kakishita M, Ohta K, Nagase S et al (2002) Carvedilol decreases elevated oxidative stress in human failing myocardium. Circulation 105:2867鈥?871PubMed
    87.Heck SL, Gulati G, Ree AH, Schulz-Menger J, Gravdehaug B, Rosjo H et al (2012) Rationale and design of the prevention of cardiac dysfunction during an adjuvant breast cancer therapy (PRADA) trial. Cardiology 123:240鈥?47PubMed
    88.Pituskin E, Haykowsky M, Mackey JR, Thompson RB, Ezekowitz J, Koshman S et al (2011) Rationale and design of the multidisciplinary approach to novel therapies in cardiology oncology research trial (MANTICORE 101
    east): a randomized, placebo-controlled trial to determine if conventional heart failure pharmacotherapy can prevent trastuzumab-mediated left ventricular remodeling among patients with HER2+ early breast cancer using cardiac MRI. BMC Cancer 11:318PubMed Central PubMed
    89.Oliveira MS, Melo MB, Carvalho JL, Melo IM, Lavor MS, Gomes DA et al (2013) Doxorubicin cardiotoxicity and cardiac function improvement after stem cell therapy diagnosed by strain echocardiography. J Cancer Sci Ther 5:52鈥?7PubMed
    90.Di GH, Jiang S, Li FQ, Sun JZ, Wu CT, Hu X et al (2012) Human umbilical cord mesenchymal stromal cells mitigate chemotherapy-associated tissue injury in a pre-clinical mouse model. Cytotherapy 14:412鈥?22PubMed
    91.Merino H, Singla DK (2014) Notch-1 mediated cardiac protection following embryonic and induced pluripotent stem cell transplantation in doxorubicin-induced heart failure. PLoS One 9:e101024PubMed Central PubMed
    92.Singla DK (2014) Akt-mTOR pathway inhibits apoptosis and fibrosis in doxorubicin-induced cardiotoxicity following embryonic stem cell transplantation. Cell Transplant 24(6):1031鈥?042PubMed
    93.Singla DK, Abdelli LS (2014) Embryonic stem cells and released factors stimulate c-kit/FLK-1 progenitor cells and promote neovascularization in doxorubicin-induced cardiomyopathy. Cell Transplant 24(6):1043鈥?052PubMed
    94.Madonna R, Rokosh G, De Caterina R, Bolli R (2010) Hepatocyte growth factor/Met gene transfer in cardiac stem cells鈥攑otential for cardiac repair. Basic Res Cardiol 105:443鈥?52PubMed Central PubMed
    95.Herman EH, Ferrans VJ (1998) Preclinical animal models of cardiac protection from anthracycline-induced cardiotoxicity. Semin Oncol 25:15鈥?1PubMed
    96.Lipshultz SE, Cohen H, Colan SD, Herman EH (2006) The relevance of information generated by in vitro experimental models to clinical doxorubicin cardiotoxicity. Leuk Lymphoma 47:1454鈥?458PubMed
    97.Zbinden G, Bachmann E, Holderegger C (1971) Model systems for cardiotoxic effects of anthracyclines. Antibiot Chemother 1978(23):255鈥?70
    98.Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M et al (2006) Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation 114:2474鈥?481PubMed
    99.Piegari E, Di Salvo G, Castaldi B, Vitelli MR, Rodolico G, Golino P et al (2008) Myocardial strain analysis in a doxorubicin-induced cardiomyopathy model. Ultrasound Med Biol 34:370鈥?78PubMed
    100.Adamcova M, Simunek T, Kaiserova H, Popelova O, Sterba M, Potacova A et al (2007) In vitro and in vivo examination of cardiac troponins as biochemical markers of drug-induced cardiotoxicity. Toxicology 237:218鈥?28PubMed
    101.Madonna R, Delli Pizzi S, Di Donato L, Mariotti A, Di Carlo L, D鈥橴go E et al (2012) Non-invasive in vivo detection of peripheral limb ischemia improvement in the rat after adipose tissue-derived stromal cell transplantation. Circ J 76:1517鈥?525PubMed
    102.Madonna R, Delli Pizzi S, Tartaro A, De Caterina R (2014) Transplantation of mesenchymal cells improves peripheral limb ischemia in diabetic rats. Mol Biotechnol 56:438鈥?48PubMed
  • 作者单位:Rosalinda Madonna (1) (2) (3)
    Christian Cadeddu (4)
    Martino Deidda (4)
    Donato Mele (5)
    Ines Monte (6)
    Giuseppina Novo (7)
    Pasquale Pagliaro (8)
    Alessia Pepe (9)
    Paolo Spallarossa (10)
    Carlo Gabriele Tocchetti (11)
    Concetta Zito (12)
    Giuseppe Mercuro (4)

    1. Center of Excellence on Aging, Institute of Cardiology, 鈥淕. d鈥橝nnunzio鈥?University 鈥?Chieti, Chieti, Italy
    2. Texas Heart Institute, Houston, TX, USA
    3. Cardiology Division, Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
    4. Department of Medical Sciences 鈥淢ario Aresu鈥? University of Cagliari, Cagliari, Italy
    5. Cardiology Unit, University Hospital of Ferrara, Ferrara, Italy
    6. Department of General Surgery and Medical-Surgery Specialties, University of Catania, Catania, Italy
    7. Chair and Division of Cardiology, University of Palermo, Palermo, Italy
    8. Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
    9. U.O.C. Magnetic Resonance Imaging, Fondazione G. Monasterio C.N.R., Pisa, Italy
    10. Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genoa, Italy
    11. Division of Internal Medicine, Department of Translational Medical Sciences, Federico II University, Naples, Italy
    12. U.O.C. Cardiology Intensive Unit, A.O.U. Policlinico 鈥淕. Martino鈥? University of Messina, Messina, Italy
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Cardiology
  • 出版者:Springer Netherlands
  • ISSN:1573-7322
文摘
Although treatment for heart failure induced by cancer therapy has improved in recent years, the prevalence of cardiomyopathy due to antineoplastic therapy remains significant worldwide. In addition to traditional mediators of myocardial damage, such as reactive oxygen species, new pathways and target cells should be considered responsible for the impairment of cardiac function during anticancer treatment. Accordingly, there is a need to develop novel therapeutic strategies to protect the heart from pharmacologic injury, and improve clinical outcomes in cancer patients. The development of novel protective therapies requires testing putative therapeutic strategies in appropriate animal models of chemotherapy-induced cardiomyopathy. This Position Paper of the Working Group on Drug Cardiotoxicity and Cardioprotection of the Italian Society of Cardiology aims to: (1) define the distinctive etiopatogenetic features of cardiac toxicity induced by cancer therapy in humans, which include new aspects of mitochondrial function and oxidative stress, neuregulin-1 modulation through the ErbB receptor family, angiogenesis inhibition, and cardiac stem cell depletion and/or dysfunction; (2) review the new, more promising therapeutic strategies for cardioprotection, aimed to increase the survival of patients with severe antineoplastic-induced cardiotoxicity; (3) recommend the distinctive pathological features of cardiotoxicity induced by cancer therapy in humans that should be present in animal models used to identify or to test new cardioprotective therapies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700