Synthesis of bifunctional TiO2@SiO2-B(OH)2@Fe3O4@TiO2 sandwich-like nanosheets for sequential selective enrichment of phosphopeptides and glycopeptides for mass sp
详细信息    查看全文
  • 作者:Dongpo Xu ; Mingxia Gao ; Chunhui Deng…
  • 关键词:Sandwich ; like nanosheet ; Boronic acid ; Titanium dioxide ; Glycopeptides ; Phosphopeptides ; MALDI ; TOF mass spectrometry
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2016
  • 出版时间:August 2016
  • 年:2016
  • 卷:408
  • 期:20
  • 页码:5489-5497
  • 全文大小:1,862 KB
  • 参考文献:1.Pawson T, Scott JD. Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci. 2005;30(6):286–90.CrossRef
    2.Dennis JW, Nabi IR, Demetriou M. Metabolism, cell surface organization, and disease. Cell. 2009;139(7):1229–41.CrossRef
    3.Mann M, Ong SE, Grønborg M, Steen H, Jensen ON, Pandey A. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 2002;20(6):261–8.CrossRef
    4.Alvarez-Manilla G, Atwood III J, Guo Y, Warren NL, Orlando R, Pierce M. Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res. 2006;5(3):701–8.CrossRef
    5.Donnelly E, Goldstein I. Glutaraldehyde-insolubilized concanavalin A: an adsorbent for the specific isolation of polysaccharides and glycoproteins. Biochem J. 1970;118(4):679–80.CrossRef
    6.Drake PM, Schilling B, Niles RK, Braten M, Johansen E, Liu HC, et al. A lectin affinity workflow targeting glycosite-specific, cancer-related carbohydrate structures in trypsin-digested human plasma. Anal Biochem. 2011;408(1):71–85.CrossRef
    7.Hägglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res. 2004;3(3):556–66.CrossRef
    8.Sparbier K, Koch S, Kessler I, Wenzel T, Kostrzewa M. Selective isolation of glycoproteins and glycopeptides for MALDI-TOF MS detection supported by magnetic particles. J Biomol Tech. 2005;16(4):407–13.
    9.Zhou HL, Watts JD, Aebersold R. A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol. 2001;19(4):375–8.CrossRef
    10.McLachlin DT, Chait BT. Improved β-elimination-based affinity purification strategy for enrichment of phosphopeptides. Anal Chem. 2003;75(24):6826–36.CrossRef
    11.Ballif BA, Villén J, Beausoleil SA, Schwartz D, Gygi SP. Phosphoproteomic analysis of the developing mouse brain. Mol Cell Proteomics. 2004;3(11):1093–101.CrossRef
    12.Grønborg M, Kristiansen TZ, Stensballe A, Andersen JS, Ohara O, Mann M, et al. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies identification of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteomics. 2002;1(7):517–27.CrossRef
    13.Thingholm TE, Jørgensen TJ, Jensen ON, Larsen MR. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc. 2006;1(4):1929–35.CrossRef
    14.Nelson CA, Szczech JR, Xu QG, Lawrence MJ, Jin S, Ge Y. Mesoporous zirconium oxide nanomaterials effectively enrich phosphopeptides for mass spectrometry-based phosphoproteomics. Chem Commun. 2009;43:6607–9.CrossRef
    15.Gruhler A, Olsen JV, Mohammed S, Mortensen P, Færgeman NJ, Mann M, et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics. 2005;4(3):310–27.CrossRef
    16.Sun ZY, Hamilton KL, Reardon KF. Evaluation of quantitative performance of sequential immobilized metal affinity chromatographic enrichment for phosphopeptides. Anal Biochem. 2014;445:30–7.CrossRef
    17.Tsai CF, Hsu CC, Hung JN, Wang YT, Choong WK, Zeng MY, et al. Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography. Anal Chem. 2014;86(1):685–93.CrossRef
    18.Xu YW, Wu ZX, Zhang LJ, Lu HJ, Yang PY, Webley PA, et al. Highly specific enrichment of glycopeptides using boronic acid-functionalized mesoporous silica. Anal Chem. 2008;81(1):503–8.CrossRef
    19.Nelson CA, Szczech JR, Dooley CJ, Xu QG, Lawrence MJ, Zhu HY, et al. Effective enrichment and mass spectrometry analysis of phosphopeptides using mesoporous metal oxide nanomaterials. Anal Chem. 2010;82(17):7193–201.CrossRef
    20.Lu ZD, Duan JC, He L, Hu YX, Yin YD. Mesoporous TiO2 nanocrystal clusters for selective enrichment of phosphopeptides. Anal Chem. 2010;82(17):7249–58.CrossRef
    21.Wang JX, Wang YN, Gao MX, Zhang XM, Yang PY. Multilayer hydrophilic poly(phenol-formaldehyde resin)-coated magnetic graphene for boronic acid immobilization as a novel matrix for glycoproteome analysis. ACS Appl Mater Interfaces. 2015;7(29):16011–7.CrossRef
    22.Wang YL, Liu MB, Xie LQ, Fang CY, Xiong HM, Lu HJ. Highly efficient enrichment method for glycopeptide analyses: using specific and nonspecific nanoparticles synergistically. Anal Chem. 2014;86(4):2057–64.CrossRef
    23.Liu LT, Zhang Y, Zhang L, Yan GQ, Yao J, Yang PY, et al. Highly specific revelation of rat serum glycopeptidome by boronic acid-functionalized mesoporous silica. Anal Chim Acta. 2012;753:64–72.CrossRef
    24.Chen HM, Deng CH, Zhang XM. Synthesis of Fe3O4@ SiO2@ PMMA core-shell-shell magnetic microspheres for highly efficient enrichment of peptides and proteins for MALDI‐ToF MS analysis. Angew Chem Int Ed. 2010;49(3):607–11.CrossRef
    25.Hu LH, Zhou HJ, Li YH, Sun ST, Guo LH, Ye ML, et al. Profiling of endogenous serum phosphorylated peptides by titanium (IV) immobilized mesoporous silica particles enrichment and MALDI-TOFMS detection. Anal Chem. 2009;81(1):94–104.CrossRef
    26.Iorgulescu G. Saliva between normal and pathological. Important factors in determining systemic and oral health. J Med Life. 2008;2(3):303–7.
    27.Dodds MW, Johnson DA, Yeh CK. Health benefits of saliva: a review. J Dent. 2005;33(3):223–33.CrossRef
    28.Lee YH, Wong DT. Saliva: an emerging biofluid for early detection of diseases. Am J Dent. 2009;22(4):241–8.
    29.Sun NR, Deng CH, Li Y, Zhang XM. Size-exclusive magnetic graphene/mesoporous silica composites with titanium(IV)-immobilized pore walls for selective enrichment of endogenous phosphorylated peptides. ACS Appl Mater Interfaces. 2014;6(14):11799–804.CrossRef
  • 作者单位:Dongpo Xu (1)
    Mingxia Gao (1)
    Chunhui Deng (1)
    Xiangmin Zhang (1)

    1. Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Food Science
    Inorganic Chemistry
    Physical Chemistry
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1618-2650
  • 卷排序:408
文摘
In this work, the bifunctional TiO2@SiO2-B(OH)2@Fe3O4@TiO2 sandwich-like nanosheets were designed and synthesized for the sequential selective enrichment of phosphopeptides and glycopeptides. Due to the bifunctional property of the titanium dioxide and the boronic acid group, the nanosheets were successfully applied to the enrichment of phosphopeptides and glycopeptides sequentially, evaluated by capturing phosphopeptides from tryptic digestion of model phosphoprotein bovine β-casein diluted to 0.02 ng/μL (8 × 10−16 mol/μL) and glycopeptides from tryptic digestion of model glycoprotein horseradish peroxidase (HRP) diluted to 0.1 ng/μL (2.5 × 10−15 mol/μL). The enrichment selectivity of the bifunctional nanosheets was evaluated by capturing phosphopeptides from a peptide mixture of β-casein and bovine serum albumin (BSA) with the molar ratio of 1:1000 (8.3 × 10−12 mol of β-casein and 8.3 × 10−9 mol of BSA in 100 μL) and glycopeptides from a peptide mixture of HRP and BSA up to the ratio of 1:50 (5.0 × 10−11 mol of HRP and 2.5 × 10−9 mol of BSA in 100 μL).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700