Molecular dynamic and quantum mechanics study of drug recognition for the extremity of DNA G-quadruplex groove
详细信息    查看全文
  • 作者:Jinlian Li (1) (2) (3)
    Jia Fu (3)
    Jianping Wang (2)
    Donghua Hu (2)
    Zhongmin Su (1) (2)
    Xiaoqiang Jin (3)
  • 关键词:Molecular dynamics (MD) ; Density functional theory (DFT) ; G ; quadruplex groove ; Distamycin A ; Electronic property
  • 刊名:Medicinal Chemistry Research
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:21
  • 期:12
  • 页码:4010-4016
  • 全文大小:545KB
  • 参考文献:1. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269鈥?0280 CrossRef
    2. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34:5402鈥?415 CrossRef
    3. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossv谩ry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER10. University of California, San Francisco
    4. Chen X, Ramakrishnan B, Sundaralingam M (1997) Crystal structures of the side-by-side binding of distamycin to AT-containing DNA Octamers d(ICITACIC) and d(ICATATIC). J Mol Biol 267:1157鈥?170 CrossRef
    5. Cian AD, Lacroix L, Douarrec C, Temime-Smaalic N, Trentesauxc C, Riouc J-F, Mergny J-L (2008) Targeting telomeres and telomerase. Biochimie 90:131鈥?55 CrossRef
    6. Coll M, Frederick CA, Wang AH-J, Rich A (1987) A bifurcated hydrogen-bonded conformation in the d(A.T) base pairs of the DNA dodecamer d(CGCAAATTTGCG) and its complex with distamycin. Proc Natl Acad Sci USA 84:8385鈥?389 CrossRef
    7. Cornell WD, Cieplak P, Bayly CI, Gould sIR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179鈥?197 CrossRef
    8. Cosconati S, Marinelli L, Trotta R, Virno A, Tito SD, Romagnoli R, Pagano B, Limongelli V, Giancola C, Baraldi PG, Mayol L, Novellino E, Randazzo A (2010) Structural and conformational requisites in DNA quadruplex groove binding: another piece to the puzzle. J Am Chem Soc 132:6425鈥?433 CrossRef
    9. Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT (1988) Structure and energetics of ligand binding to proteins: / Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins: Struct Funct Bioinf 4:31鈥?7 CrossRef
    10. Davis JT (2004) G-quartets 40聽years later: from 5鈥?GMP to molecular biology and supramolecular chemistry. Angew Chem Int Ed Engl 43:668鈥?98 CrossRef
    11. Deng J, Pan B, Sundaralingam M (2003) Structure of d(ITITACAC) complexed with distamycin at 1.6聽脜 resolution. Acta Crystallogr Sect D Biol Crystallogr D59:2342鈥?344 CrossRef
    12. Fedoroff OY, Salazar M, Han H, Chemeris VV, Kerwin SM, Hurley LH (1998) NMR-Based model of a telomerase-inhibiting compound bound to G-quadruplex DNA. Biochemistry 8:12367鈥?2374 CrossRef
    13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision E.01. Gaussian, Inc., Wallingford, CT
    14. Gellert M, Lipsett MN, Davies DR (1962) Helix formation by guanylic acid. Proc Natl Acad Sci USA 48:2013鈥?018 CrossRef
    15. Han FX, Wheelhouse RT, Hurley LH (1999) Interactions of TMPyP4 and TMPyP2 with quadruplex DNA. Structural basis for the differential effects on telomerase inhibition. J Am Chem Soc 121:3561鈥?570 CrossRef
    16. Hurley LH (2001) Secondary DNA structures as molecular targets for cancer therapeutics. Biochem Soc Trans 29:692鈥?96 CrossRef
    17. Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2:188鈥?00 CrossRef
    18. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926鈥?35 CrossRef
    19. Kang RAC, Zhang X, Ratliff R, Moyzis R, Rich A (1992) Crystal structure of four-stranded Oxytricha telomeric DNA. Nature 356:126鈥?31 CrossRef
    20. Kerwin SM (2000) G-Quadruplex DNA as a target for drug design. Curr Pharm Des 6:441鈥?71 CrossRef
    21. Li Q, Xiang J, Li X, Chen L, Xu X, Tang Y, Zhou Q, Li L, Zhang H, Sun H, Guan A, Yang Q, Yang S, Xu G (2009) Stabilizing parallel G-quadruplex DNA by a new class of ligands: two non-planar alkaloids through interaction in lateral grooves. Biochimie 91:811鈥?19 CrossRef
    22. Martino L, Virno A, Pagano B, Virgilio A, Micco SD, Galeone A, Giancola C, Bifulco G, Mayol L, Randazzo A (2007) Structural and thermodynamic studies of the interaction of Distamycin A with the parallel quadruplex structure [d(TGGGGT)]4. J Am Chem Soc 129:16048鈥?6056 CrossRef
    23. Mergny J-L, H茅l猫ne C (1998) G-quadruplex DNA: a target for drug design. Nat Med 4:1366鈥?367 CrossRef
    24. Mergny J-L, Riou J-F, Mailliet P, Teulade-Fichou M-P, Gilson E (2002) Natural and pharmacological regulation of telomerase. Nucleic Acids Res 30:839鈥?65 CrossRef
    25. Mitra SN, Wahl MC, Sundaralingam M (1999) Structure of the side-by-side binding of distamycin to d(GTATATAC)2. Acta Crystallogr Sect D Biol Crystallogr D55:602鈥?09 CrossRef
    26. Monchaud D, Teulade-Fichou M-P (2008) A hitchhiker鈥檚 guide to G-quadruplex ligands. Org Biomol Chem 64:627鈥?36 CrossRef
    27. Neidle S, Parkinson G (2002) Telomere maintenance as a target for anticancer drug discovery. Nat Rev Drug Discov 1:383鈥?93 CrossRef
    28. Neidle S, Read MA (2000) G-quadruplexes as therapeutic targets. Biopolymers 56:195鈥?08 CrossRef
    29. Oganesian L, Bryan TM (2007) Physiological relevance of telomeric G-quadruplex formation: a potential drug target. BioEssays 29:155鈥?65 CrossRef
    30. Patel DJ, Phan AT, Kuryavyi V (2007) Human telomere, oncogenic promoter and 5鈥?UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res 35:7429鈥?455 CrossRef
    31. Qina Y, Hurley LH (2008) Structures, folding patterns and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie 90:1149鈥?171 CrossRef
    32. Read M, Harrison RJ, Romagnoli B, Tanious FA, Gowan SH, Reszka AP, Wilson WD, Kelland LR, Neidle S (2001) Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc Natl Acad Sci USA 98:4844鈥?849 CrossRef
    33. Schultze P, Smith FW, Feigon J (1994) Refined solution structure of the dimeric quadruplex formed from the Oxytricha telomeric oligonucleotide d(GGGGTTTTGGGG). Structure聽2:221鈥?33 CrossRef
    34. Shammas MA, Reis RJS, Li C, Koley H, Hurley LH, Anderson KC, Munshi NC (2004) Regular articles鈥攅xperimental therapeutics, preclinical pharmacology: telomerase inhibition and cell growth arrest after telomestatin treatment in multiple myeloma. Clin Cancer Res 10:770鈥?76 CrossRef
    35. Smith FW, Feigon J (1992) Quadruplex structure of Oxytricha telomeric DNA oligonucleotides. Nature 356:164鈥?68 CrossRef
    36. Strahan GD, Keniry MA, Shafer RH (1998) NMR structure refinement and dynamics of the K+-[d(G3T4G3)]2 quadruplex via particle mesh Ewald molecular dynamics simulations. Biochem J 75:968鈥?81
    37. Teulade-Fichou M-P, Carrasco C, Guittat L, Bailly C, Alberti P, Mergny J-L, David A, Lehn J-M, Wilson WD (2003) Selective recognition of G-quadruplex telomeric DNA by a bis(quinacridine) macrocycle. J Am Chem Soc 125:4732鈥?740 CrossRef
    38. Varetto U <MOLEKEL 5.4>; Swiss National Supercomputing Centre, Manno (Switzerland)
    39. Wang Y, Patel DJ (1995) Solution structure of the Oxytricha telomeric repeat d[G4(T4G4)3] G-tetraplex. J Mol Biol 251:76鈥?4 CrossRef
    40. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157鈥?174 CrossRef
    41. Williamson JR (1994) G-quartet structures in telomeric DNA. Annu Rev Biophys Biomol Struct 23:703鈥?30 CrossRef
  • 作者单位:Jinlian Li (1) (2) (3)
    Jia Fu (3)
    Jianping Wang (2)
    Donghua Hu (2)
    Zhongmin Su (1) (2)
    Xiaoqiang Jin (3)

    1. Department of Chemistry, College of Science, Yanbian University, Yanji, 133002, People鈥檚 Republic of China
    2. Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, People鈥檚 Republic of China
    3. Department of Chemistry, College of Pharmaceutical Sciences, Jiamusi University, Jiamusi, 154007, People鈥檚 Republic of China
文摘
Human DNA G-quadruplex has been an attractive drug target for cancer therapeutic intervention. Especially the G-quadruplex groove has been paid growing attention to because of its selectivity. In this work, molecular dynamics (MD) simulations of the complexes of parallel G-quadruplexes ([d(TGGGGT)]4 and [d(GGGGGG)]4) with distamycin A (Dist-A) dimmers were performed. The characteristic of drug binding in G-quadruplex grooves was investigated. The simulations reveal the propensity of Dist-A dimmer toward the end of the groove. The electronic properties of three successive G-tetrads are estimated by density functional theory (DFT) method at the B3LYP/6-31G (d, p) level. The results show that the N3 atoms in two terminal G-tetrads possess more negative charges than it in the middle G-tetrad, which is one reason for driving cation ligand toward the end of groove. This study provides the factors of affecting the binding of drugs in the G-quadruplex groove and is of significance for drug design based on the structure of G-quadruplex groove.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700