Finite element analysis of the effect of friction in high pressure torsion
详细信息    查看全文
  • 作者:Yuepeng Song (1) (2) (3)
    Wenke Wang (1)
    Dongsheng Gao (3)
    Eun Yoo Yoon (4)
    Dong Jun Lee (2)
    Hyoung Seop Kim (2)
  • 关键词:severe plastic deformation ; plasticity ; work hardening ; finite element method ; grain size
  • 刊名:Metals and Materials International
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:20
  • 期:3
  • 页码:445-450
  • 全文大小:
  • 参考文献:1. Z. Xie, J. Xie, Y. Hong, and X. Wu, / Sci. China Tech. Sci. 53, 1534 (2010). CrossRef
    2. H. S. Kim, Y. Estrin and M. B. Bush, / Acta Mater. 48, 493 (2000). CrossRef
    3. H. S. Kim and Y. Estrin, / Appl. Phys. Lett. 79, 4115 (2001). CrossRef
    4. H. S. Kim, C. Suryanarayana, and S. J. Kim, / Powder Metall. 41, 217 (1998). CrossRef
    5. R. Z. Valiev and T. G. Langdon, / Prog. Mater. Sci. 51, 881 (2006). CrossRef
    6. B. Hadzima, M. Jane猫ek, Y. Estrin, and H. S. Kim, / Mater. Sci. Eng. A 462, 243 (2007). CrossRef
    7. M. Vaseghi, A. K. Taheri, and H. S. Kim, / Met. Mater. Int. 16, 363 (2010). CrossRef
    8. G. Purcek, O. Saray, and O. Kul, / Met. Mater. Int. 16, 145 (2010). CrossRef
    9. S. C. Yoon, A. V. Nagasekhar, and H. S. Kim, / Met. Mater. Int. 15, 215 (2009). CrossRef
    10. H. S. Kim. M. H. Seo, and S. I. Hong, / Mater. Sci. Eng. A 291, 86 (2000). CrossRef
    11. H. S. Kim and Y. Estrin, / Mater. Sci. Eng. A 410, 285 (2005). CrossRef
    12. S.-H. Lee and J.-H. Kim, / Korean J. Met. Mater. 51, 41 (2013). CrossRef
    13. K. H. Lee and S. I. Hong, / Korean J. Met. Mater. 51, 621 (2013).
    14. C. Xu, Z. Horita, and T. G. Langdon, / Acta Mater. 56, 5168 (2008). CrossRef
    15. A. P. Zhilyaev, K. Oh-ishi, T. G. Langdon, and T. R. McNelley, / Mater. Sci. Eng. A 410, 277 (2005). CrossRef
    16. L. Kurmanaeva, Y. Ivanisenko, J. Markmann, C. K眉bel, A. Chuvilin, S. Doyle, R. Z. Valiev, and H. J. Fecht, / Mater. Sci. Eng. A 527, 1776 (2010). CrossRef
    17. A. P. Zhilyaev and T. G. Langdon, / Prog. Mater. Sci. 53, 893 (2008). CrossRef
    18. E. Y. Yoon, D. J. Lee, B. H. Park, M. R. Akbarpour, M. Farvizi, and H. S. Kim, / Met. Mater. Int. 19, 927 (2013). CrossRef
    19. W. Wang, Y. Song, D. Gao, E. Y. Yoon, D. J. Lee, C. S. Lee, and H. S. Kim, / Met. Mater. Int. 19, 1021 (2013). CrossRef
    20. E.-Y. Kim, J.-H. Cho, H.-W. Kim, and S.-H. Choi, / Korean J. Met. Mater. 51, 41 (2013).
    21. S. Lee, J.-S. Lee, Y.-B. Kim, G.-A. Lee, S.-P. Lee, I.-S. Son, J.-K. Lee, and D.-S. Bae, / Korean J. Met. Mater. 51, 655 (2013).
    22. E. K. Lee and S. I. Hong, / Korean J. Met. Mater. 51, 15 (2013).
    23. J. K. Lim, S. Y. Choi, K. H. Choe, S. S. Kim, and G. S. Cho, / Korean J. Met. Mater. 51, 385 (2013). CrossRef
    24. K. S. Lee, S. E. Lee, J. S. Kim, M. J. Kim, D. H. Bae, and Y. N. Kwon, / Korean J. Met. Mater. 51, 535 (2013).
    25. J. S. Kim, K. S. Lee, Y. N. Kwon, Y. S. Lee, S. Lee, and Y. W. Chang, / Korean J. Met. Mater. 51, 547 (2013).
    26. R. Z. Valiev, Y. V. Lvanisenko, E. F. Rauch, and B. Baudelet, / Acta Mater. 44, 4705 (1996). CrossRef
    27. F. Wetscher, A. Vorhauer, R. Stock, and R. Pippan, / Mater. Sci. Eng. A 387, 809 (2004). CrossRef
    28. F. Wetshcer, R. Pippan, S. Sturm, F. Kauffmann, and C. Scheu, / Metall. Mater. Trans. A 37, 1963 (2006). CrossRef
    29. Y. Song, E. Y. Yoon, D. J. Lee, J. H. Lee, and H. S. Kim, / Mater. Sci. Eng. A 528, 4840 (2011). CrossRef
    30. S. Y. Kang and B. Ko, / Korean J. Met. Mater. 51, 651 (2013).
    31. S. C. Yoon, Z. Horita, and H. S. Kim, / J. Mater. Proc. Tech. 201, 32 (2008). CrossRef
    32. R. B. Figueiredo, P. H. R. Pereira, M. T. P. Aguilar, P. R. Cetlin, and T. G. Langdon, / Acta Mater. 60, 3190 (2012). CrossRef
    33. S. C. Yoon, Z. Horita, and H. S. Kim, / J. Mater. Proc. Tech. 201, 32 (2008). CrossRef
    34. H. S. Kim, / J. Mater. Proc. Tech. 113, 617 (2001). CrossRef
  • 作者单位:Yuepeng Song (1) (2) (3)
    Wenke Wang (1)
    Dongsheng Gao (3)
    Eun Yoo Yoon (4)
    Dong Jun Lee (2)
    Hyoung Seop Kim (2)

    1. Mechanical and Electronic Engineering College, Shandong Agricultural University, Tai鈥檃n, 271018, China
    2. Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
    3. Shandong Provincial Key Laboratory of Horticultural Machineries and Equipments, Shandong Agricultural University, Tai鈥檃n, China
    4. Materials Deformation Department, Korea Institute of Materials Science, Changwon, 641-831, Korea
  • ISSN:2005-4149
文摘
High pressure torsion (HPT) is one of the most important techniques among various methods that create severe plastic deformation in the production of bulk materials with nano/ultrafine grained microstructures. Since the driving force in deforming the workpiece in HPT is surface friction, understanding of the friction effect is critical for successful application of HPT. In this study, the friction effect in HPT was analyzed using the finite element method. The distribution of effective strain on the contact surface of the HPT samples under different friction conditions was investigated. The friction force influenced the effective strain more in the middle and edge regions than in the central region. The condition for the minimum friction factor that could achieve a sticking condition between the surfaces of the dies, and the samples in the middle and edge regions, was investigated. There was a critical friction coefficient in which the effective strain varies sharply with an increasing friction coefficient.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700