First-principles study on the stability and electronic structure of Mg/ZrB2 interfaces
详细信息    查看全文
  • 作者:Xiao Li 李孝 ; Qun Hui 惠群 ; Dongyuan Shao 邵栋元 ; Jingjing Chen 陈晶晶
  • 关键词:Mg/ZrB2 interface ; density functional theory ; ideal work of adhesion
  • 刊名:Science China Materials
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:59
  • 期:1
  • 页码:28-37
  • 全文大小:2,436 KB
  • 参考文献:1.Kojima Y, Aizawa T, Kamado S, et al. Progressive steps in the platform science and technology for advanced magnesium alloys. Mater Sci Forum, 2003, 419: 3–20CrossRef
    2.Du Y, Zhang LJ, Cui S L, et al. Atomic mobilities and diffusivities in Al alloys. Sci China Tech Sci, 2012, 55: 306–328CrossRef
    3.Zhao Y, Jamesh MI, Li WK, et al. Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys. Acta Biomater, 2014, 10: 544–556CrossRef
    4.Kudela S. Magnesium-lithium matrix composites–an overview. Int J Mater Prod Tec, 2003, 18: 91–115CrossRef
    5.Paramsothy M, Gupta M. ZrB2 nanoparticle induced nano-LPSO-grain and nano-LPSO-layer reinforced ultra-high strength Mg–RE alloy. J Mater Sci, 2013, 48: 8368–8376CrossRef
    6.Krishnadev MR, Angers R, Nair CGK, et al. The structure and properties of magnesium-matrix composites. JOM, 1993, 45: 52–54CrossRef
    7.Lloyd DJ. Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev, 1994, 39: 1–23CrossRef
    8.Wu JJ, Zhao YT, Zhang SL, et al. Microstructures of in situ synthesized ZrB2/AZ91 magnesium matrix composite synthesized by a new method of direct melt reaction. Adv Mater Res, 2011, 295: 1103–1107
    9.Lu L, Lim CYH, Yeong WM. Effect of reinforcements on strength of Mg9%Al composites. Compos Struct, 2004, 66: 41–45CrossRef
    10.Lim CYH, Lim SC, Gupta M. Wear behaviour of SiCp-reinforced magnesium matrix composites. Wear, 2003, 255: 629–637CrossRef
    11.El-Saeid Essa Y, Fernández-Sáez J, Pérez-Castellanos JL. Some aspects of damage and failure mechanisms at high strain-rate and elevated temperatures of particulate magnesium matrix composites. Compos Part B Eng, 2003, 34: 551–560CrossRef
    12.Klösch G, McKay BJ, Schumacher P. Preliminary investigation on the grain refinement behavior of ZrB2 Particles in Mg-Al Alloys. In: Mathaudhu SN, Luo AA, Neelameggham NR, Nyberg EA, Sillekens WH (eds.). Essential Readings in Magnesium Technology, Hoboken: John Wiley & Sons, Inc., 2006: 255–261
    13.Veprek S. Recent search for new superhard materials: go nano! J Vac Sci Technol A, 2013, 31: 050882CrossRef
    14.Wright AF, Feibelman PJ, Atlas SR. First-principles calculation of the Mg(0001) surface relaxation. Surf Sci, 1994, 302: 215–222CrossRef
    15.Zhang X, Luo X, Li J, et al. Structure and bonding features of ZrB2(0001) surface. Comp Mater Sci, 2009, 46: 1–6CrossRef
    16.Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136: B864–B871CrossRef
    17.Štich I, Payne MC, King-Smith RD, et al. Ab initio total-energy calculations for extremely large systems: application to the Takayanagi reconstruction of Si(111). Phys Rev L, 1992, 68: 1351–1354CrossRef
    18.Perdew JP, Zunger A. Self-interaction correction to density-functional approximations for many-electron system. Phys Rev B, 1981, 23: 5048–5079CrossRef
    19.Perdew JP, Chevary JA, Vosko SH, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B, 1992, 46: 6671–6687CrossRef
    20.Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13: 5188–5192CrossRef
    21.Ahmed R, Hashemifar SJ, Akbarzadeh H, et al. First-principles study of the structural and electronic properties o f III-phosphides. Physica B, 2008, 403: 1876–1881CrossRef
    22.Yoon M, Weitering HH, Zhang Z, et al. First-principles studies of hydrogen interaction with ultrathin Mg and Mg-based alloy films. Phys Rev B, 2011, 83: 045413CrossRef
    23.Jiang T, Sun LX, Li WX, et al. First-principles study of hydrogen absorption on Mg (0001) and formation of magnesium hydride. Phys Rev B, 2016, 81: 035416CrossRef
    24.Nie Y, Xie Y. Ab initio thermodynamics of the hcp metals Mg, Ti, and Zr. Phys Rev B, 2007, 75: 174117CrossRef
    25.Vajeeston P, Ravindran P, Ravi C, et al. Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides. Phys Rev B, 2001, 63: 045115CrossRef
    26.Li H, Zhang L, Zeng Q, et al. Crystal structure and elastic properties of ZrB compared with ZrB2: a first-principles study. Comp Mater Sci, 2010, 49: 814–819CrossRef
    27.Huerta L, Duran A, Falconi R, et al. Comparative study of the core level photoemission of the ZrB2 and ZrB12. Physica C, 2010, 470: 456–460CrossRef
    28.Chen M, Yang XB, Cui J, et al. Stability of transition metals on Mg (0001) surfaces and their effects on hydrogen adsorption. Int J Hydrogen Energ, 2012, 37: 309–317CrossRef
    29.Boettger JC. Nonconvergence of surface energies obtained from thin-film calculations. Phys Rev B, 1994, 49: 16798–16800CrossRef
    30.Wachowicz E, Kiejna A. Bulk and surface properties of hexagonal-close-packed Be and Mg. J Phys Condens Mat, 2001, 48: 10767–10776CrossRef
    31.Hu XL, Liu X, Xu Z, et al. First-principles investigation of the effects of B impurities on the mechanical properties of NiAl intermetallics. Sci China Phys Mech Astron, 2011, 54: 809–814CrossRef
    32.Li X, Hui Q, Cheng NP, et al. Stability and electronic structure of MgAl2O4(111) surface: a first-principles study. Comp Mater Sci, 2016, 112: 8–17CrossRef
    33.Hashibon A, Schravendijk P, Elsässer C, et al. Atomistic study of structure and stability of thin Ni films on Fe surfaces. Philos Mag, 2009, 89: 3413–3433CrossRef
    34.Lu S, Hu QM, Punkkinen MPJ, et al. First-principles study of fcc-Ag/bcc-Fe interfaces. Phys Rev B, 2013, 87: 224104CrossRef
    35.Goldfarb D. A family of variable-metric methods derived by variational means. Math Comput, 1970, 24: 23–26CrossRef
    36.Finnis MW. The theory of metal-ceramic interfaces. J Phys Condens Mat, 1996, 8: 5811–5836CrossRef
    37.Hashibon A, Elsässer C, Mishin Y, et al. First-principles study of thermodynamical and mechanical stabilities of thin copper film on tantalum. Phys Rev B, 2007, 76: 245434CrossRef
    38.Li CM, Cheng ZQ, Zeng SM, et al. Intermetallic phase formation and evolution during homogenization and solution in Al-Zn-Mg-Cu alloys. Sci China Technol Sci, 2013, 56: 2827–2838CrossRef
    39.Luo K, Deng Q, Zha X, et al. Electronic structures and mechanical properties of Al(111)/ZrB2(0001) heterojunctions from first-principles calculation. Mol Phys, 2015, 113: 1794–1801CrossRef
    40.Li K, Sun ZG, Wang F, et al. First-principles calculations on Mg/Al4C3 interface. Appl Surf Sci, 2013, 270: 584–589CrossRef
    41.Li J, Yang Y, Li L, et al. Interfacial properties and electronic structure of β-SiC(111)/a-Ti(0001): a first pr inciple study. J Appl Phys, 2013, 113: 023516CrossRef
    42.Jin N, Yang Y, Luo X, et al. First-principles calculation of W/WC interface: atomic structure, stability and electronic properties. Appl Surf Sci, 2015, 324: 205–211CrossRef
    43.Li J, Yang Y, Feng G, et al. First-principles study of stability and properties on β-SiC/TiC(111) interface. J Appl Phys, 2013, 114: 163522CrossRef
    44.Zhang W, Smith JR, Evans AG. The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems: Ni/Al2O3 and Cu/Al2O3. Acta Mater, 2002, 50: 3803–3816CrossRef
    45.Han YF, Dai YB, Wang J, et al. First-principles calculations on Al/AlB2 interfaces. Appl Surf Sci, 2011, 257: 7831–7836CrossRef
    46.Siegel DJ, Hector Jr LG, Adams JB. Adhesion, atomic structure, and bonding at the Al(111)/α-Al2O3(0001) interface: a first principles study. Phys Rev B, 2002, 65: 085415CrossRef
    47.Li Z, Yang J, Hou JG, et al. First-principles study of MgB2(0001) surfaces. Phys Rev B, 2002, 65: 100507CrossRef
  • 作者单位:Xiao Li 李孝 (1)
    Qun Hui 惠群 (1)
    Dongyuan Shao 邵栋元 (1)
    Jingjing Chen 陈晶晶 (1)
    Peida Wang 王培达 (1)
    Zhenyuan Jia 贾镇源 (1)
    Chunmei Li 李春梅 (1)
    Zhiqian Chen 陈志谦 (1)
    Nanpu Cheng 程南璞 (1)

    1. Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China
  • 刊物类别:Materials Science, general; Chemistry/Food Science, general;
  • 刊物主题:Materials Science, general; Chemistry/Food Science, general;
  • 出版者:Science China Press
  • ISSN:2199-4501
文摘
The geometric optimizations, values of the ideal work of adhesion, interface energies and electronic structures of Mg(001)/ZrB2(001) interfaces with different stacking sequences (top, center and bridge) were studied by the plane wave pseudopotential method based on the first-principles density functional theory (DFT). The results show that the B-terminated top-site (top1 and top2) interfaces have little change and the B-terminated bridge-site interface transforms into a new B-terminated center-site interface, and both the Zr-terminated top- and bridge-site interfaces transform into new Zr-terminated center-site interfaces after geometry optimizations. The bond lengths of Mg-B, interfacial distances and values of the ideal work of adhesion of the newly formed center-site interfaces and the optimized original center-site interfaces are close to each other. The B-terminated center-site interface is the most stable as it has the largest value of the ideal work of adhesion and the smallest interfacial distance. The values of the ideal work of adhesion of the sub-interface regions indicate that the interfaces can improve the bond strengths of the sub-interfaces in Mg side while weaken those in ZrB2 side. The B-terminated (Zr-terminated) center-site interface has negative interface energy and can be formed spontaneously in B-rich (poor) environment. The B-terminated center- and topsite interfaces have both ionic bonds and covalent bonds which exhibit strong directionality in the B-terminated center-site interface. ZrB2 particles are suitable to be used as effective nucleants to refine the grain size of Mg alloy or as reinforcements to prepare Mg matrix composites due to the strongly bonded Mg/ZrB2 interfaces. Keywords Mg/ZrB2 interface density functional theory ideal work of adhesion

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700