Structural Polymorphism of Mn-Doped BaTiO3
详细信息    查看全文
  • 作者:N. T. Dang ; D. P. Kozlenko ; T. L. Phan ; S. E. Kichanov…
  • 关键词:Multiferroics ; ferroelectricity ; neutron diffraction ; phase transformation ; barium titanate
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:45
  • 期:5
  • 页码:2477-2483
  • 全文大小:1,654 KB
  • 参考文献:1.W. Eerenstein, N.D. Mathur, and J.F. Scott, Nature 442, 759 (2006).CrossRef
    2.G.A. Smolensky and I.E. Chupis, Sov. Phys. Uspekhi 25, 475 (1982).CrossRef
    3.M. Fiebig, J. Phys. D Appl. Phys. 38, R123 (2005).CrossRef
    4.T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).CrossRef
    5.P. Curie, J. Phys. Theor. Appl. 3, 393 (1894).CrossRef
    6.G.A. Smolensky, I.E. Isupov, and A.I. Agranovskaya, Sov. Phys. Solid State 1, 149 (1959).
    7.T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, Nature 430, 541 (2004).CrossRef
    8.N.A. Hill, J. Phys. Chem. B 104, 6694 (2000).CrossRef
    9.N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, and S.-W. Cheong, Nature 429, 392 (2004).CrossRef
    10.S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).CrossRef
    11.T. Okamoto, S. Kitagawa, N. Inoue, and A. Ando, Appl. Phys. Lett. 98, 072905 (2011).CrossRef
    12.S. Huang, H. Chen, S.C. Wu, and J.Y.M. Lee, J. Appl. Phys. 84, 5155 (1998).CrossRef
    13.A.A. Heitmann and G.A. Rossetti, Integr. Ferroelectr. 126, 155 (2011).CrossRef
    14.G. Schulze, Z. Für Angew. Math. Und Mech. 43, 512 (1963).CrossRef
    15.K.W. Kirby and B.A. Wechsler, J. Am. Ceram. Soc. 74, 1841 (1991).CrossRef
    16.D.C. Sinclair, J.M.S. Skakle, F.D. Morrison, R.I. Smith, and T.P. Beales, J. Mater. Chem. 9, 1327 (1999).CrossRef
    17.J.G. Dickson, L. Katz, and R. Ward, J. Am. Chem. Soc. 83, 3026 (1961).CrossRef
    18.N.V. Dang, T. Phan, T.D. Thanh, V.D. Lam, and L.V. Hong, J. Appl. Phys. 111, 113913 (2012).CrossRef
    19.H. Nakayama and H. Katayama-Yoshida, Jpn. J. Appl. Phys. 40, L1355 (2001).CrossRef
    20.G.M. Keith, C.A. Kirk, K. Sarma, N.M. Alford, E.J. Cussen, M.J. Rosseinsky, and D.C. Sinclair, Chem. Mater. 16, 2007 (2004).CrossRef
    21.L. Miranda, A. Feteira, D.C. Sinclair, K. Boulahya, M. Hernando, J. Ramírez, A. Varela, J.M. González-Calbet, and M. Parras, Chem. Mater. 21, 1731 (2009).CrossRef
    22.V.L. Aksenov, A.M. Balagurov, V.P. Glazkov, D.P. Kozlenko, I.V. Naumov, B.N. Savenko, D.V. Sheptyakov, V.A. Somenkov, A.P. Bulkin, V.A. Kudryashev, and V.A. Trounov, Phys. B 265, 258 (1999).CrossRef
    23.J. Rodríguez-Carvajal, Phys. B 192, 55 (1993).CrossRef
    24.R.H. Buttner and E.N. Maslen, Acta Crystallogr. Sect. B 48, 764 (1992).CrossRef
    25.R.E. Cohen, Nature 358, 136 (1992).CrossRef
    26.R.E. Cohen and H. Krakauer, Ferroelectrics 136, 65 (1992).CrossRef
    27.A. Filippetti and N.A. Hill, Phys. Rev. B 65, 195120 (2002).CrossRef
    28.V.S. Tiwari, N. Singh, and D. Pandey, J. Phys. Condens. Matter 7, 1441 (1995).CrossRef
    29.P.K. Singh and A. Chandra, J. Phys. D Appl. Phys. 36, L93 (2003).CrossRef
    30.H.T. Langhammer, T. Müller, K.-H. Felgner, and H.-P. Abicht, J. Am. Ceram. Soc. 83, 605 (2004).CrossRef
    31.V.F. Sears, Neutron News 3, 26 (1992).CrossRef
    32.F.A. Garcia, U.F. Kaneko, E. Granado, J. Sichelschmidt, M. Hölzel, J.G.S. Duque, C.A.J. Nunes, R.P. Amaral, P. Marques-Ferreira, and R. Lora-Serrano, Phys. Rev. B 91, 224416 (2015).CrossRef
    33.R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).CrossRef
    34.P.D. Battle, T.C. Gibb, and C.W. Jones, J. Solid State Chem. 74, 60 (1988).CrossRef
    35.J.J. Adkin and M.A. Hayward, Chem. Mater. 19, 755 (2007).CrossRef
    36.J.J. Adkin and M.A. Hayward, J. Solid State Chem. 179, 70 (2006).CrossRef
  • 作者单位:N. T. Dang (1)
    D. P. Kozlenko (2)
    T. L. Phan (3)
    S. E. Kichanov (2)
    N. V. Dang (4)
    T. D. Thanh (5)
    L. H. Khiem (6)
    S. H. Jabarov (7)
    T. A. Tran (8)
    D. B. Vo (9)
    B. N. Savenko (2)

    1. Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
    2. Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980, Dubna, Russia
    3. Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin, 449-791, Korea
    4. Faculty of Physics, College of Science, Thai Nguyen University, Thai Nguyen, 250000, Vietnam
    5. Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Vietnam
    6. Advanced Center for Physics, Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, 100000, Vietnam
    7. Institute of Physics, ANAS, 1143, Baku, Azerbaijan
    8. Ho Chi Minh City University of Technology and Education, Ho Chi Minh, 700000, Viet Nam
    9. Department of Physics, Ho Chi Minh City University of Pedagogy, Ho Chi Minh, 700000, Vietnam
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
The crystal structure of BaTi1−x Mn x O3 (0 ≤ x ≤ 0.5) has been determined by means of neutron powder diffraction. Upon Mn doping, the BaTi1−x Mn x O3 system undergoes structural transformations from a polar tetragonal structure with space group P4mm to a non-polar 6H-type hexagonal structure with space group P6 3 /mmc at x > 0.01, and then to a non-polar 12R-type rhombohedral structure with space group R-3m at x > 0.12. For the ferroelectric tetragonal phase, Mn doping leads to a reduction of the spontaneous polarization and the Curie temperature. In the 6H structure, Ti atoms display a strong preference for the corner-sharing octahedral sites, whereas both Ti and Mn randomly occupy the octahedral sites in the face-sharing dimers. In the 12R-structure, Ti atoms also have a strong preference for the corner-sharing octahedral sites, whereas Mn atoms occupy the octahedral sites at the centers of the face-sharing octahedral trimers. Both Ti and Mn atoms are distributed over the octahedral sites at the borders of the trimers. The absence of long-range magnetic order in the 6H-type and 12R-type phases was observed, which is due to the presence of the non-magnetic Ti ions at the centers of the corner-sharing octahedra connecting the face-sharing dimers (6H-type) and trimers (12R-type), breaking the magnetic interaction between the dimers/trimers and isolating them from each other.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700