Dynamics of mass transport during nanohole drilling by local droplet etching
详细信息    查看全文
  • 作者:Christian Heyn (1)
    Thorben Bartsch (1)
    Stefano Sanguinetti (2)
    David Jesson (3)
    Wolfgang Hansen (1)

    1. Institut f眉r Angewandte Physik
    ; Universit盲t Hamburg ; Jungiusstr. 11 ; Hamburg ; 20355 ; Germany
    2. L-NESS and Dipartimento di Scienza dei Materiali
    ; Universit谩 di Milano Bicocca ; Milano ; Via Cozzi 5320125 ; Italy
    3. School of Physics and Astronomy
    ; Cardiff University ; Cardiff ; CF24 3AA ; United Kingdom
  • 关键词:Droplet epitaxy ; Droplet etching ; Semiconductor nanostructures ; Nanoholes ; Self ; assembly ; Mass transport ; Growth modelling
  • 刊名:Nanoscale Research Letters
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:10
  • 期:1
  • 全文大小:1,874 KB
  • 参考文献:1. Moison, JM, Houzay, F, Barthe, F, Leprince, L, Andr茅, E, Vatel, O (1994) Selforganized growth of regular nanometerscale InAs dots on GaAs. Appl Phys Lett. 64: pp. 196-8 CrossRef
    2. Madhukar, A, Xie, Q, Chen, P, Konkar, A (1994) Nature of strained InAs threedimensional island formation and distribution on GaAs (100). Appl Phys Lett. 64: pp. 2727-9 CrossRef
    3. Leonard, D, Krishnamurthy, M, Fafard, S, Merz, JL, Petroff, PM (1994) Molecular beam epitaxy growth of quantum dots from strained coherent uniform islands of InGaAs on GaAs. J Vacuum Sci Technol B. 12: pp. 1063-6 CrossRef
    4. Mo, YW, Savage, DE, Schwartzentruber, BS, Lagally, MG (1990) Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001). Phys Rev Lett. 65: pp. 1020-3 CrossRef
    5. Chikyow, T, Koguchi, N (1990) MBE growth method for pyramid-shaped GaAs micro crystals on ZnSe (001) surface using Ga droplets. Jpn J Appl Phys. 29: pp. 2093-5 CrossRef
    6. Mano, T, Watanabe, K, Tsukamoto, S, Koguchi, N, Fujioka, H, Oshima, M (2000) Nanoscale InGaAs concave disks fabricated by heterogeneous droplet epitaxy. Appl Phys Lett. 76: pp. 3543-5 CrossRef
    7. Kim, JS, Koguchi, N (2004) Near room temperature droplet epitaxy for fabrication of InAs quantum dots. Appl Phys Lett. 85: pp. 5893-5 CrossRef
    8. Heyn, C, Stemmann, A, Schramm, A, Welsch, H, Hansen, W, Nemcsics, A (2007) Regimes of GaAs quantum dot self-assembly by droplet epitaxy. Phys Rev B. 76: pp. 075317-20 CrossRef
    9. Abbarchi, M, Mastrandrea, CA, Kuroda, T, Mano, T, Sakoda, K, Koguchi, N (2008) Exciton fine structure in strain-free GaAs/al0.3ga0.7as quantum dots: extrinsic effects. Phys Rev B. 78: pp. 125321-4 CrossRef
    10. Stock, E, Warming, T, Ostapenko, I, Rodt, S, Schliwa, A, T枚fflinger, JA (2010) Single-photon emission from InGaAs quantum dots grown on (111) GaAs. Appl Phys Lett. 96: pp. 093112-4 CrossRef
    11. Volmer, M, Weber, A (1926) Keimbildung in 眉bers盲ttigten gebilden. Z Phys Chem. 119: pp. 277-301
    12. Yamagiwa, M, Mano, T, Kuroda, T, Tateno, T, Sakoda, K, Kido, G (2006) Self-assembly of laterally aligned GaAs quantum dot pairs. Appl Phys Lett. 89: pp. 113115-113117 CrossRef
    13. Kuroda, T, Mano, T, Ochiai, T, Sanguinetti, S, Sakoda, K, Kido, G (2005) Optical transitions in quantum ring complexes. Phys Rev B. 72: pp. 205301-08 CrossRef
    14. Huang, S, Niu, Z, Fang, Z, Ni, H, Gong, Z, Xia, J (2006) Complex quantum ring structures formed by droplet epitaxy. Appl Phys Lett. 89: pp. 031921-3 CrossRef
    15. Tong, CZ, Yoon, SF (2008) Investigation of the fabrication mechanism of self-assembled GaAs quantum rings grown by droplet epitaxy. Nanotechnology. 19: pp. 365604 CrossRef
    16. Wu, J, Wang, ZM, Li, AZ, Zeng, Z, Li, S, Chen, G (2011) Formation of GaAs double rings through gallium migration and nanodrilling. J Nanoelectronics Optoelectronics. 6: pp. 58-61 CrossRef
    17. Sanguinetti, S, Koguchi, N, Mano, T, Kuroda, T (2011) Droplet epitaxy quantum ring structures. J Nanoelectronics Optoelectronics. 6: pp. 34-50 CrossRef
    18. Wang, ZM, Liang, BL, Sablon, KA, Salamo, GJ. (2007) Nanoholes fabricated by self-assembled gallium nanodrill on GaAs (100). Appl Phys Lett. 90: pp. 113120-2 CrossRef
    19. Strom, NW, Wang, ZM, Lee, JH, AbuWaar, ZY, Mazur, YI, Salamo, GJ. (2007) Self-assembled InAs quantum dot formation on GaAs ring-like nanostructure templates. Nanoscale Res Lett. 2: pp. 112-7 CrossRef
    20. Lee, JH, Wang, ZM, Ware, ME, Wijesundara, KC, Garrido, M, Stinaff, EA (2008) Super low density InGaAs semiconductor ring-shaped nanostructures. Crystal Growth Des. 8: pp. 1945-51 CrossRef
    21. Stemmann, A, Heyn, C, K枚ppen, T, Kipp, T, Hansen, W (2008) Local droplet etching of nanoholes and rings on GaAs and AlGaAs surfaces. Appl Phys Lett. 93: pp. 123108-10 CrossRef
    22. Alonso-Gonz谩lez, P, Mart铆n-S谩nchez, J, Gonz谩lez, Y, Al茅n, B, Fuster, D, Gonz谩lez, L (2009) Formation of lateral low density In(Ga)As quantum dot pairs in GaAs nanoholes. Crystal Growth Des. 9: pp. 2525-8 CrossRef
    23. Heyn, C, Stemmann, A, Hansen, W (2009) Nanohole formation on AlGaAs surfaces by local droplet etching with gallium. J Crystal Growth. 311: pp. 1839-42 CrossRef
    24. Heyn, C, Stemmann, A, Hansen, W (2009) Dynamics of self-assembled droplet etching. Appl Phys Lett. 95: pp. 173110-12 CrossRef
    25. Lee, JH, Wang, ZM, Kim, ES, Kim, NY, Park, SH, Salamo, GJ (2010) Various quantum- and nano-structures by III-V droplet epitaxy on GaAs substrates. Nanoscale Res Lett. 5: pp. 308-14 CrossRef
    26. Stemmann, A, K枚ppen, T, Grave, M, Wildfang, S, Mendach, S, Hansen, W (2009) Local etching of nanoholes and quantum rings with InxGa1-x droplets. J Appl Phys. 106: pp. 064315-8 CrossRef
    27. Heyn, C, Stemmann, A, K枚ppen, T, Strelow, C, Kipp, T, Grave, M (2009) Highly uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes. Appl Phys Lett. 94: pp. 183113-5 CrossRef
    28. Heyn, C, Strelow, C, Hansen, W (2012) Excitonic lifetimes in single GaAs quantum dots fabricated by local droplet etching. New J Phys. 14: pp. 053004-15 CrossRef
    29. Sonnenberg, D, Graf, A, Paulava, V, Hansen, W, Heyn, C (2012) Highly versatile ultra-low density GaAs quantum dots fabricated by filling of self-assembled nanoholes. Appl Phys Lett. 101: pp. 143106-9 CrossRef
    30. Huo, YH, Rastelli, A, Schmidt, OG (2013) Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl Phys Lett. 102: pp. 152105-8 CrossRef
    31. Sonnenberg, D, K眉ster, A, Graf, A, Heyn, C, Hansen, W (2014) Vertically stacked quantum dot pairs fabricated by nanohole filling. Nanotechnology. 25: pp. 215602-7 CrossRef
    32. Heyn, C, Schmidt, M, Schwaiger, S, Stemmann, A, Mendach, S, Hansen, W (2011) Air-gap heterostructures. Appl Phys Lett. 98: pp. 033105-7 CrossRef
    33. Bartsch, T, Schmidt, M, Heyn, C, Hansen, W (2012) Thermal conductance of ballistic point contacts. Phys Rev Lett. 108: pp. 075901-4 CrossRef
    34. Bartsch, T, Sonnenberg, D, Strelow, C, Heyn, C, Hansen, W (2014) Electric properties of semiconductor nanopillars. J Electronic Mater. 43: pp. 1972-5 CrossRef
    35. Tersoff, J, Jesson, DE, Tang, WX (2009) Running droplets of gallium from evaporation of gallium arsenide. Science. 324: pp. 236-8 CrossRef
    36. Hardy, SC (1985) The surface tension of liquid gallium. J Crystal Growth. 71: pp. 602-6 CrossRef
    37. Moll, N, Kley, A, Pehlke, E, Scheffler, M (1996) GaAs equilibrium crystal shape from first principles. Phys Rev B. 54: pp. 8844-55 CrossRef
    38. Heyn, C (2011) Kinetic model of local droplet etching. Phys Rev B. 83: pp. 165302-6 CrossRef
    39. Thurmond, CD (1965) Phase equilibria in the GaAs and the GaP systems. J Phys Chem Solids. 26: pp. 785-802 CrossRef
    40. Gorokhov, VA, Dedegkaev, TT, Ilyin, YL, Moshnikov, VA, Petrov, AS, Sosov, YM (1984) The investigation of p- and as diffusion in liquid gallium. Crystal Res Technol. 19: pp. 1465-8 CrossRef
    41. Reyes, K, Smereka, P, Nothern, D, Millunchick, JM, Bietti, S, Somaschini, C (2013) Unified model of droplet epitaxy for compound semiconductor nanostructures: experiments and theory. Phys Rev B. 87: pp. 165406-19 CrossRef
    42. Heyn, C, Stemmann, A, Eiselt, R, Hansen, W (2009) Influence of Ga coverage and As pressure on local droplet etching of nanoholes and quantum rings. J Appl Phys. 105: pp. 054316-9 CrossRef
    43. Somaschini, C, Bietti, S, Fedorov, A, Koguchi, N, Sanguinetti, S (2010) Concentric multiple rings by droplet epitaxy: fabrication and study of the morphological anisotropy. Nanoscale Res Lett. 5: pp. 1865-7 CrossRef
    44. Fuster, D, Gonz谩lez, Y, Gonz谩lez, L (2014) Fundamental role of arsenic flux in nanohole formation by Ga droplet etching on GaAs (001). Nanoscale Res Lett. 9: pp. 309-14 CrossRef
    45. Keizer, JG, Bocquel, J, Koenraad, PM, Mano, T, Noda, T, Sakoda, K (2010) Atomic scale analysis of self assembled GaAs/AlGaAs quantum dots grown by droplet epitaxy. Appl Phys Lett. 96: pp. 062101-3 CrossRef
    46. Ostwald, W (1900) 脺ber die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberfl盲chenspannung fester K枚rper. Z Phys Chem. 34: pp. 495-503
    47. Heyn, C, Schn眉ll, S, Hansen, W (2014) Scaling of the structural characteristics of nanoholes created by local droplet etching. J Appl Phys. 115: pp. 024309-15 CrossRef
    48. Venables, JA (1973) Rate equation approaches to thin film nucleation kinetics. Phil Mag. 27: pp. 697-738 CrossRef
    49. Venables, JA, Spiller, GDT, Hanb眉cken, M (1984) Nucleation and growth of thin films. Rep Prog Phys. 47: pp. 399-459 CrossRef
    50. Li, X, Wu, J, Wang, ZM, Liang, B, Lee, J, Kim, E-S (2014) Origin of nanohole formation by etching based on droplet epitaxy. Nanoscale. 6: pp. 2675-81 CrossRef
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
Local droplet etching (LDE) utilizes metal droplets during molecular beam epitaxy for the self-assembled drilling of nanoholes into III/V semiconductor surfaces. An essential process during LDE is the removal of the deposited droplet material from its initial position during post-growth annealing. This paper studies the droplet material removal experimentally and discusses the results in terms of a simple model. The first set of experiments demonstrates that the droplet material is removed by detachment of atoms and spreading over the substrate surface. Further experiments establish that droplet etching requires a small arsenic background pressure to inhibit re-attachment of the detached atoms. Surfaces processed under completely minimized As pressure show no hole formation but instead a conservation of the initial droplets. Under consideration of these results, a simple kinetic scaling model of the etching process is proposed that quantitatively reproduces experimental data on the hole depth as a function of the process temperature and deposited amount of droplet material. Furthermore, the depth dependence of the hole side-facet angle is analyzed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700