Synthesis of CuO nanopowders by high-energy ball-milling method and investigation of their catalytic activity on thermal decomposition of ammonium perchlorate particles
详细信息    查看全文
  • 作者:Esmaeil Ayoman ; Seyed Ghorban Hosseini
  • 关键词:CuO nanopowders ; Ball ; milling method ; Ammonium perchlorate (AP) ; Catalytic activity ; Thermal decomposition ; Kinetic and thermodynamic parameters
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:123
  • 期:2
  • 页码:1213-1224
  • 全文大小:2,440 KB
  • 参考文献:1.Chunwei W, Kyl S, Snehaunshu C, Guoqiang J, Lei Z, Michael RZ. Encapsulation of perchlorate salts within metal oxides for application as nanoenergetic oxidizers. Adv Funct Mater. 2012;22:78–85.CrossRef
    2.Carnes LC, Klabunde KJ. The catalytic methanol synthesis over nanoparticle metal oxide catalysts. J Mol Catal A: Chem. 2003;194:227–36.CrossRef
    3.Fujimura K, Miyake A. The effect of specific surface area of TiO2 on the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2010;99:27–31.CrossRef
    4.Chen L-J, Li G-S, Qi P, Li L-P. Thermal decomposition of ammonium perchlorate activated via addition of NiO nanocrystals. J Therm Anal Calorim. 2008;92:765–9.CrossRef
    5.Chen L, Li L, Li G. Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate. J Alloys Compd. 2008;464:532–6.
    6.Yu Z, Chen L, Lu L, Yang X, Wang X. DSC/TG-MS study on in situ catalytic thermal decomposition of ammonium perchlorate over CoC2O4. Chin J Catal. 2009;30:19–23.CrossRef
    7.Oelerich W, Klassen T, Bormann R. Comparison of the catalytic effects of V, V2O5, VN, and VC on the hydrogen as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J Alloys Compd. 2001;315:237–42.CrossRef
    8.Prasad R. Mechanism and kinetics of thermal decomposition of ammoniacal copper oxalate chromate. J Therm Anal Calorim. 2006;85:279–84.CrossRef
    9.Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY. Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. Phys Chem B. 2004;108:5547–51.CrossRef
    10.Kumar RV, Diamant Y, Gedanken A. Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem Mater. 2000;12:2301–5.CrossRef
    11.Alkoy EM, Alkoy PJ, Kellym PJ. The structure and properties of copper oxide and copper aluminium oxide coatings prepared by pulsed magnetron sputtering of powder targets. Vacuum. 2005;79:221–30.CrossRef
    12.Chowdhuri A, Gupta V, Sreenivas K, Kumar R, Mozumdar S, Patanjali PK. Response speed of SnO 2-based H2S gas sensors with CuO nanoparticles. Appl Phys Lett. 2004;84:1180–2.CrossRef
    13.Cao H, Suib SL. Highly efficient heterogeneous photooxidation of 2-propanol to acetone with amorphous manganese oxide catalysts. J Am Chem Soc. 1994;116:5334–42.CrossRef
    14.Seiichi S, Shogo M, Sinya S. Photo electrochemical characteristics of cells with dyed and undyed nanoporous p-type semiconductor CuO electrodes. J Photochem Photobiol A Chem. 2008;194:143–7.CrossRef
    15.Tang KJ, Wang XF, Yan WF. Fabrication of super hydrophilic Cu2O and CuO membranes. J Membr Sci. 2006;286:279–84.CrossRef
    16.Jarlborg T. Effects of spin–phonon interaction within the CuO plane of high-TC superconductors. Phys C (Amsterdam, Neth). 2007;45:5–14.CrossRef
    17.Chen LJ, Li GS, Li LP. CuO nanocrystals in thermal decomposition of ammonium perchorate stabilization, structural characterization and catalytic activities. J Therm Anal Calorim. 2008;2:581–7.CrossRef
    18.Hamdani M, Koenig JF, Chartier P. Films minces de Co3O4 et NiCo2O4 obtenus par nébulisation réactive (spray) pour l’électrocatalyse. II. Etude par voltampérométrie cyclique. J Appl Electrochem. 1988;18:568–76.CrossRef
    19.Athawale AA, Bapat M. A soft solution process to synthesize nanocrystalline barium zirconate via reactive solid state precursors. J Metastable Nanocryst Mater. 2005;23:3–6.CrossRef
    20.Li MY, Dong WS, Liu CL, Liu Z, Lin FQ. Ionic liquid-assisted synthesis of copper oxalate nanowires and their conversion to copper oxide nanowires. J Cryst Growth. 2008;310:4628–34.CrossRef
    21.Liu Y, Zhang X. Effect of calcination temperature on the morphology and electrochemical properties of Co3O4 for lithium-ion battery. Electrochim Acta. 2009;54:4180–5.CrossRef
    22.Ganguli AK, Ahmad T, Arya PR, Jha P. Nanoparticles of complex metal oxides synthesized using the reverse-micellar and polymeric precursor routes. Pramana. 2005;65:937–47.CrossRef
    23.Boutonnet M, Kizling J, Stenius P, Maire G. The preparation of monodisperse colloidal metal particles from microemulsions. Colloids Surf. 1982;5:209–25.CrossRef
    24.Palkar VR, Ayyub P, Chattopadhyay S, Multani M. Size-induced structural transitions in the Cu–O and Ce–O systems. Phys Rev B. 1996;53:2167–70.CrossRef
    25.Hong ZS, Cao Y, Deng JF. A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles. Mater Lett. 2002;52:34–8.CrossRef
    26.Prajakta RP, Krishnamurthy VN, Satyawati SJ. Effect of nano-copper oxide and copper chromite on the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech. 2008;33:266–70.CrossRef
    27.Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184.CrossRef
    28.Hosseini SG, Abazari R, Gavi A. Pure CuCr2O4 nanoparticles: synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sci. 2014;37:72–9.CrossRef
    29.Birks LS, Friedman H. Particle size determination from X-ray broadening. J Appl Phys. 1946;17:687–92.CrossRef
    30.Zhang WJ, Li P, Xu HB, Sun R, Qing P, Zhang Y. Thermal decomposition of ammonium perchlorate in the presence of Al(OH)3·Cr(OH)3 nanoparticles. J Hazard Mater. 2014;268:273–80.CrossRef
    31.Rajić M, Sućeska M. Study of Thermal decomposition kinetics of low-temperature reaction of ammonium perchlorate by isothermal TG. J Therm Anal Calorim. 2000;63:375–86.
    32.Zhi J, Tian-Fang W, Shu-Fen L, Feng-Qi Z, Zi-Ru L, et al. Thermal behavior of ammonium perchlorate and metal powders of different grades. J Therm Anal Calorim. 2006;85:315–20.CrossRef
    33.Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R. Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4powders on thermal decomposition of ammonium perchlorate. Powder Technol. 2011;217:330–9.CrossRef
    34.Wang J, He S, Li Z, Jing X, Zhang M, Jiang Z. Self-assembled CuO nanoarchitectures and their catalytic activity in the thermal decomposition of ammonium perchlorate. J Colloid Polym Sci. 2009;287:853–8.CrossRef
    35.Yang C, Wang J, Xiao F, Su X. Microwave hydrothermal disassembly for evolution from CuO dendrites to nanosheets and their applications in catalysis and photo-catalysis. Powder Technol. 2014;264:36–42.CrossRef
    36.Li C, Yin Y, Hou H, Fan N, Yuan F, Shi Y, Meng Q. Preparation and characterization of Cu(OH)2 and CuO nanowires by the coupling route of microemulsion with homogenous precipitation. Solid State Commun. 2010;150:585–9.CrossRef
    37.Freeman ES, Anderson DA. Effects of radiation and doping on the catalytic activity of magnesium oxide on the thermal decomposition of potassium perchlorate. Nature. 1965;206:378–9.CrossRef
    38.Dubey BL, Singh NB, Srivastava JN, Ojha AK. The catalytic behavior of NiFe2-xCrxO4 (0.0 ≤ X≤2.0) during the thermal decomposition of ammonium perchlorate, polystyrene and their composite propellants. Indian J Chem. 2001;40A:841–7.
    39.Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443:1–36.CrossRef
    40.Joshi SS, Patil PR, Krishnamurthy VN. Thermal decomposition of ammonium perchlorate in the presence of nanosized ferric oxide. Def Sci J. 2008;58:721–7.CrossRef
    41.Patil PR, Krishnamurthy VN, Joshi SS. Differential scanning calorimetric study of HTPB based composite propellants in presence of nano ferric oxide. Propellants Explos Pyrotech. 2006;31:442–6.CrossRef
    42.Survase DV, Gupta M, Asthana SN. The effect of Nd2O3 on thermal and ballistic properties of ammonium perchlorate (AP) based composite propellants. Prog Cryst Growth Charact Mater. 2002;45:161–5.CrossRef
    43.Rogachev AS, Moskovskikh DO, Nepapushev AA, Sviridova TA, Vadchenko SG, Rogachev SA, Mukasyan AS. Experimental investigation of milling regimes in planetary ball mill and their influence on structure and reactivity of gasless powder exothermic mixtures. Powder Technol. 2015;274:44–52.CrossRef
    44.Eslami A, Hosseini SG, Asadi V. The effect of microencapsulation with nitrocellulose on thermal properties of sodium azide particles. Prog Org Coat. 2009;65:269–74.CrossRef
    45.Eslami A, Hosseini SG. Improving safety performance of lactose-fueled binary pyrotechnic systems of smoke dyes. J Therm Anal Calorim. 2011;104:671–8.CrossRef
    46.Eslami A, Hosseini SG, Pourmortazavi SM. Thermoanalytical investigation on some boron-fuelled binary pyrotechnic systems. Fuel. 2008;87:3339–43.CrossRef
    47.Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRef
    48.Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRef
    49.ASTM E698-05. Standard test method for Arrhenius kinetic constants for thermally unstable materials. doi:10.​1520/​E0698-05 .
    50.Hosseini SG, Eslami A. Investigation on the reaction of powdered tin as a metallic fuel with some pyrotechnic oxidizers. Propellant Explos Pyrotech. 2011;36:175–81.CrossRef
    51.Rocco JAFF, Lima JES, Frutuoso AG, Iha K, Ionashiro M, et al. TG studies of a composite solid rocket propellant based on HTPB-binder. J Therm Anal Calorim. 2004;77:803–13.CrossRef
    52.Hosseini SG, Eslami A. Thermoanalytical investigation of relative reactivity of some nitrate oxidants in tin-fueled pyrotechnic systems. J Therm Anal Calorim. 2010;101:1111–9.CrossRef
    53.Eslami A, Hosseini SG, Bazrgary M. Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. J Therm Anal Calorim. 2012;113:721–30.CrossRef
  • 作者单位:Esmaeil Ayoman (1)
    Seyed Ghorban Hosseini (1)

    1. Department of Chemistry, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Sciences
    Polymer Sciences
    Physical Chemistry
    Inorganic Chemistry
    Measurement Science and Instrumentation
  • 出版者:Akad茅miai Kiad贸, co-published with Springer Science+Business Media B.V., Formerly Kluwer Academic
  • ISSN:1572-8943
文摘
In this research, nearly spherical CuO nanopowders (NPs) were synthesized in a high-energy ball-milling method at room temperature for different milling times (20 and 40 h) at dry medium. The structure, particle size, purity and morphology of the resulting CuO NPs were characterized by X-ray diffraction, inductively coupled plasma and scanning electron microscopy (SEM) techniques. The results showed that the NPs obtained after 40 h have the smallest particle with only 31 nm. These NPs were studied as an additive for promoting the thermal decomposition of ammonium perchlorate (AP) particles. The photographs of field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy showed that the surface of CuO NPs was successfully coated with AP particles. Also, differential scanning calorimetry (DSC) and thermogravimetry analysis (TG) techniques were used to investigate the thermal decomposition of pure and AP + CuO nanocomposites. The DSC/TG results showed that CuO NPs with 31 nm had an excellent catalytic effect on the AP thermal decomposition property and by adding 2 and 5 % additive, decomposition temperatures decreased by 81.9 and 90.4 °C, and the heat of decomposition increased by 707.6 and 839.9 J g−1, respectively. Finally, the apparent activation energy (E), ΔG #, ΔH #, ΔS # of thermal decomposition processes of pure and treated samples were obtained by non-isothermal methods proposed by Kissinger and Ozawa. Keywords CuO nanopowders Ball-milling method Ammonium perchlorate (AP) Catalytic activity Thermal decomposition Kinetic and thermodynamic parameters

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700