Distinct roles of Hoxa2 and Krox20 in the development of rhythmic neural networks controlling inspiratory depth, respiratory frequency, and jaw opening
详细信息    查看全文
  • 作者:Fabrice Chatonnet (1) (2)
    Ludovic J Wrobel (1)
    Valérie Mézières (1)
    Massimo Pasqualetti (3) (4)
    Sébastien Ducret (3)
    Emmanuel Taillebourg (5) (6)
    Patrick Charnay (5)
    Filippo M Rijli (3)
    Jean Champagnat (1)
  • 刊名:Neural Development
  • 出版年:2007
  • 出版时间:December 2007
  • 年:2007
  • 卷:2
  • 期:1
  • 全文大小:1369KB
  • 参考文献:1. Lumsden A, Krumlauf R: Patterning the vertebrate neuraxis. / Science 1996, 274:1109-115. CrossRef
    2. Rijli FM, Gavalas A, Chambon P: Segmentation and specification in the branchial region of the head: the role of the Hox selector genes. / Int J Dev Biol 1998, 42:393-01.
    3. Sham MH, Vesque C, Nonchev S, Marshall H, Frain M, Gupta RD, Whiting J, Wilkinson D, Charnay P, Krumlauf R: The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation. / Cell 1993, 72:183-96. CrossRef
    4. Nonchev S, Vesque C, Maconochie M, Seitanidou T, Ariza-McNaughton L, Frain M, Marshall H, Sham MH, Krumlauf R, Charnay P: Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox20 . / Development 1996, 122:543-54.
    5. Tümpel S, Maconochie M, Wiedmann LM, Krumlauf R: Conservation and diversity in the cis-regulatory networks that integrate information controlling expression of Hoxa2 in hindbrain and cranial neural crest cells in vertebrates. / Dev Biol 2002, 246:45-6. CrossRef
    6. Tümpel S, Cambronero F, Ferretti E, Blasi F, Wiedemann LM, Krumlauf R: Expression of Hoxa2 in rhombomere 4 is regulated by a conserved cross-regulatory mechanism dependent upon Hoxb1 . / Dev Biol 2007, 302:646-60. CrossRef
    7. Popperl H, Bienz M, Studer M, Chan SK, Aparicio S, Brenner S, Mann RS, Krumlauf R: Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. / Cell 1995, 81:1031-042. CrossRef
    8. Maconochie M, Nonchev S, Morrison A, Krumlauf R: Paralogous Hox genes: function and regulation. / Annu Rev Genet 1996, 30:529-56. CrossRef
    9. Tümpel S, Cambronero F, Wiedemann LM, Krumlauf R: Evolution of cis elements in the differential expression of two Hoxa2 coparalogous genes in pufferfish ( Takifugu rubripes ). / Proc Natl Acad Sci USA 2006, 103:5419-424. CrossRef
    10. Gavalas A, Davenne M, Lumsden A, Chambon P, Rijli FM: Role of Hoxa-2 in axon pathfinding and rostral hindbrain patterning. / Development 1997,124(19):3693-702.
    11. Davenne M, Maconochie MK, Neun R, Pattyn A, Chambon P, Krumlauf R, Rijli F: Hoxa2 and Hoxb2 control dorsoventral patterns of neuronal development in the rostral hindbrain. / Neuron 1999, 22:677-91. CrossRef
    12. Pasqualetti M, Ren SY, Poulet M, LeMeur M, Dierich A, Rijli FM: A Hoxa2 knockin allele that expresses EGFP upon conditional Cre-mediated recombination. / Genesis 2002, 32:109-11. CrossRef
    13. Oury F, Murakami Y, Renaud JS, Pasqualetti M, Charnay P, Ren SY, Rijli FM: Hoxa2 -and rhombomere-dependent development of the mouse facial somatosensory map. / Science 2006, 313:1408-413. CrossRef
    14. Athanassiadis T, Olsson K?, Kolta A, Westberg KG: Identification of c-Fos immunoreactive brainstem neurons activated during fictive mastication in the rabbit. / Exp Brain Res 2005, 165:478-89. CrossRef
    15. Brocard F, Verdier D, Arsenault I, Lund JP, Kolta A: Emergence of intrinsic bursting in trigeminal sensory neurons parallels the acquisition of mastication in weanling rats. / J Neurophysiol 2006, 96:2410-424. CrossRef
    16. Lund JP, Kolta A, Westberg KG, Scott G: Brainstem mechanisms underlying feeding behaviors. / Curr Opin Neurobiol 1998, 8:718-24. CrossRef
    17. Jacquin TD, Borday V, Schneider-Maunoury S, Topilko P, Ghilini G, Kato F, Charnay P, Champagnat J: Reorganization of pontine rhythmogenic neuronal networks in Krox20 knockout mice. / Neuron 1996, 17:747-58. CrossRef
    18. Domínguez del Toro E, Borday V, Davenne M, Neun R, Rijli FM, Champagnat J: Generation of a novel functional neuronal circuit in Hoxa1 mutant mice. / J Neurosci 2001, 21:5637-642.
    19. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL: Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. / Science 1991, 254:726-29. CrossRef
    20. Gray PA, Janczewski WA, Mellen N, McCrimmon DR, Feldman JL: Normal breathing requires preBotzinger complex neurokinin-1 receptor-expressing neurons. / Nat Neurosci 2001, 4:927-30. CrossRef
    21. Borday C, Coutinho A, Germon I, Champagnat J, Fortin G: Pre-/post-otic rhombomeric interactions control the emergence of a fetal-like respiratory rhythm in the mouse embryo. / J Neurobiol 2006, 66:1285-301. CrossRef
    22. Thoby-Brisson M, Trinh JB, Champagnat J, Fortin G: Emergence of the pre-B?tzinger respiratory rhythm generator in the mouse embryo. / J Neurosci 2005, 25:4307-313. CrossRef
    23. Onimaru H, Homma I: A novel functional neuron group for respiratory rhythm generation in the ventral medulla. / J Neurosci 2003, 23:1478-486.
    24. Mellen NM, Janczewski WA, Bocchiaro CM, Feldman JL: Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation. / Neuron 2003, 37:821-26. CrossRef
    25. Onimaru H, Homma I, Feldman JL, Janczewski WA: Point:Counterpoint: The parafacial respiratory group (pFRG)/pre-B?tzinger complex (preB?tC) is the primary site of respiratory rhythm generation in the mammal. / J Appl Physiol 2006, 100:2094-097. CrossRef
    26. Chatonnet F, Domínguez del Toro E, Thoby-Brisson M, Champagnat J, Fortin G, Rijli FM, Thaeron-Antono C: From hindbrain segmentation to breathing after birth: developmental patterning in rhombomeres 3 and 4. / Mol Neurobiol 2003, 28:277-94. CrossRef
    27. Coutinho AP, Borday C, Gilthorpe J, Jungbluth S, Champagnat JA, Fortin G: Induction of a parafacial rhythm generator by rhombomere 3 in the chick embryo. / J Neurosci 2004, 24:9383-390. CrossRef
    28. McCrimmon DR, Milsom WK, Alheid GF: The rhombencephalon and breathing: a view from the pons. / Respir Physiol Neurobiol 2004,143(2-):103-04. CrossRef
    29. Guimar?es L, Domínguez-del-Toro E, Chatonnet F, Wrobel L, Pujades C, Monteiro LS, Champagnat J: Exposure to retinoic acid at the onset of hindbrain segmentation induces episodic breathing in mice. / Eur J Neurosci 2007,25(12):3526-536. CrossRef
    30. Taillebourg E, Buart S, Charnay P: Conditional, floxed allele of the Krox20 gene. / Genesis 2002, 32:112-13. CrossRef
    31. Karlberg P, Koch G: Respiratory studies in newborn infants. III. Development of mechanics of breathing during the first week of life. A longitudinal study. / Acta Paediatr Suppl 1962, 135:121-29.
    32. Saunders RA, Milner AD: Pulmonary pressure/volume relationships during the last phase of delivery and the first postnatal breaths in human subjects. / J Pediatr 1978, 93:667-73. CrossRef
    33. Fisher JT, Mortola JP, Smith JB, Fox GS, Weeks S: Respiration in newborns: development of the control of breathing. / Am Rev Respir Dis 1982, 125:650-57.
    34. Mortola JP: / Respiratory Physiology of Newborn Mammals. Baltimore MD: John Hopkins University Press; 2001.
    35. Giudicelli F, Taillebourg E, Charnay P, Gilardi-Hebenstreit P: Krox-20 patterns the hindbrain through both cell-autonomous and non cell-autonomous mechanisms. / Genes Dev 2001, 15:567-80. CrossRef
    36. Rijli FM, Mark M, Lakkaraju S, Dierich A, Dolle P, Chambon P: A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa: which acts as a selector gene. / Cell 1993, 75:1333-349. CrossRef
    37. Chatonnet F, Domínguez del Toro E, Voiculescu O, Charnay P, Champagnat J: Different respiratory control systems are affected in homozygous and heterozygous kreisler mutants. / Eur J Neurosci 2002, 15:684-92. CrossRef
    38. Lumsden T: Observations on the respiratory centers in the cat. / J Physiol (Lond) 1923, 57:53-60.
    39. Bertrand F, Hugelin A: Respiratory synchronizing function of nucleus parabrachialis medialis: pneumotaxic mechanisms. / J Neurophysiol 1971, 34:189-07.
    40. Kobayashi S, Onimaru H, Inoue M, Inoue T, Sasa R: Localization and properties of respiratory neurons in the rostral pons of the newborn rat. / Neuroscience 2005, 134:317-25. CrossRef
    41. Potts JT, Rybak IA, Paton JF: Respiratory rhythm entrainment by somatic afferent stimulation. / J Neurosci 2005, 25:1965-978. CrossRef
    42. Bianchi AL, Denavit-Saubié M, Champagnat J: Central control of breathing in mammals: neuronal circuitry membrane properties and neurotransmitters. / Physiol Rev 1995, 75:1-5.
    43. Viemari JC, Bévengut M, Burnet H, Coulon P, Pequignot JM, Tiveron MC, Hilaire G: Phox2a gene A6 neurons and noradrenaline are essential for development of normal respiratory rhythm in mice. / J Neurosci 2004, 24:928-37. CrossRef
    44. Chatonnet F, Boudinot E, Chatonnet A, Taysse L, Daulon S, Champagnat J, Foutz AS: Respiratory survival mechanisms in acetylcholinesterase knockout mouse. / Eur J Neurosci 2003, 18:1419-427. CrossRef
    45. Ren SY, Pasqualetti M, Dierich A, Le Meur M, Rijli FM: A Hoxa2 mutant conditional allele generated by Flp- and Cre-mediated recombination. / Genesis 2002, 32:105-08. CrossRef
    46. Voiculescu O, Charnay P, Schneider-Maunoury S: Expression pattern of a Krox-20/Cre knock-in allele in the developing hindbrain, bones, and peripheral nervous system. / Genesis 2000, 26:123-26. CrossRef
    47. Helmbacher F, Pujades C, Desmarquet C, Frain M, Rijli FM, Chambon P, Charnay P: Hoxa-1 and Krox-20 synergize to control the development of rhombomere 3. / Development 1998, 125:4739-748.
    48. Studer M, Lumsden A, Ariza-McNaughton L, Bradley A, Krumlauf R: Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. / Nature 1996, 384:630-34. CrossRef
  • 作者单位:Fabrice Chatonnet (1) (2)
    Ludovic J Wrobel (1)
    Valérie Mézières (1)
    Massimo Pasqualetti (3) (4)
    Sébastien Ducret (3)
    Emmanuel Taillebourg (5) (6)
    Patrick Charnay (5)
    Filippo M Rijli (3)
    Jean Champagnat (1)

    1. NGI, UPR 2216, Institut de Neurobiologie Alfred Fessard IFR2218, Centre National de la Recherche Scientifique, F-91198, Gif sur Yvette Cedex, France
    2. IGFL UMR 5242 CNRS/INRA/UCB/école Normale Supérieure de Lyon, allée d'Italie, 69364, Lyon Cedex 07, France
    3. IGBMC, UMR 7104, CNRS/INSERM/ULP/Collège de France, Illkirch Cedex, F-67404, CU de Strasbourg, France
    4. Laboratori di Biologia Cellulare e dello Sviluppo, Università di Pisa, Via G Carducci, Pisa, Italy
    5. INSERM, U 784, Ecole Normale Supérieure, rue d'Ulm, 75230, Paris Cedex 05, France
    6. CEA, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, 38054, Grenoble, France
文摘
Background Little is known about the involvement of molecular determinants of segmental patterning of rhombomeres (r) in the development of rhythmic neural networks in the mouse hindbrain. Here, we compare the phenotypes of mice carrying targeted inactivations of Hoxa2, the only Hox gene expressed up to r2, and of Krox20, expressed in r3 and r5. We investigated the impact of such mutations on the neural circuits controlling jaw opening and breathing in newborn mice, compatible with Hoxa2-dependent trigeminal defects and direct regulation of Hoxa2 by Krox20 in r3. Results We found that Hoxa2 mutants displayed an impaired oro-buccal reflex, similarly to Krox20 mutants. In contrast, while Krox20 is required for the development of the rhythm-promoting parafacial respiratory group (pFRG) modulating respiratory frequency, Hoxa2 inactivation did not affect neonatal breathing frequency. Instead, we found that Hoxa2 -/- but not Krox20 -/- mutation leads to the elimination of a transient control of the inspiratory amplitude normally occurring during the first hours following birth. Tracing of r2-specific progenies of Hoxa2 expressing cells indicated that the control of inspiratory activity resides in rostral pontine areas and required an intact r2-derived territory. Conclusion Thus, inspiratory shaping and respiratory frequency are under the control of distinct Hox-dependent segmental cues in the mammalian brain. Moreover, these data point to the importance of rhombomere-specific genetic control in the development of modular neural networks in the mammalian hindbrain.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700