Dynamic regulation and dysregulation of the water channel aquaporin-2: a common cause of and promising therapeutic target for water balance disorders
详细信息    查看全文
  • 作者:Yumi Noda (1) (2)
  • 关键词:Trafficking ; Diabetes insipidus ; SIADH ; Congestive heart failure ; Hepatic cirrhosis ; Solute ; free water diuretics
  • 刊名:Clinical and Experimental Nephrology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:18
  • 期:4
  • 页码:558-570
  • 全文大小:296 KB
  • 参考文献:1. Noda Y, Sasaki S. Regulation of water balance: urine concentration and dilution. In: Coffman TM, Falk RJ, Molitoris BA, Neilson EG, Schrier RW, editors. Schrier鈥檚 diseases of the kidney. 9th ed. Philadelphia: Lippincott Williams & Wilkins; 2012. p. 132鈥?8.
    2. Fushimi K, Uchida S, Hara Y, Hirata Y, Marumo F, Sasaki S. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature (London). 1993;361:549鈥?2.
    3. Agre P, Sasaki S, Chrispeels MJ. Aquaporins: a family of water channel proteins. Am J Physiol. 1993;265:F461.
    4. Sasaki S, Fushimi K, Saito H, Saito F, Uchida S, Ishibashi K, et al. Cloning, characterization, and chromosomal mapping of human aquaporin of collecting duct. J Clin Invest. 1994;93:1250鈥?.
    5. Noda Y, Sohara E, Ohta E, Sasaki S. Aquaporins in kidney pathophysiology. Nat Rev Nephrol. 2010;6:168鈥?8.
    6. Sasaki S. Aquaporin 2: from its discovery to molecular structure and medical implications. Mol Aspects Med. 2012;33(5鈥?):535鈥?6.
    7. Wilson JL, Miranda CA, Knepper MA. Vasopressin and the regulation of aquaporin-2. Clin Exp Nephrol. 2013;. doi:10.1007/s10157-013-0789-5 .
    8. Lolait SJ, O鈥機arroll AM, McBride OW, Konig M, Morel A, Brownstein MJ. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature. 1992;357:336鈥?.
    9. Birnbaumer M, Seibold A, Gilbert S, Ishido M, Barberis C, Antaramian A, et al. Molecular cloning of the receptor for human antidiuretic hormone. Nature. 1992;357:333鈥?.
    10. Noda Y, Sasaki S. Regulation of aquaporin-2 trafficking and its binding protein complex. Biochim Biophys Acta. 2006;1758:1117鈥?5.
    11. Takata K, Matsuzaki T, Tajika Y, Ablimit A, Hasegawa T. Localization and trafficking of aquaporin 2 in the kidney. Histochem Cell Biol. 2008;130:197鈥?09.
    12. Sands JM, Nonoguchi H, Knepper MA. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am J Physiol. 1987;253:F823鈥?2.
    13. Kamsteeg EJ, Heijnen I, van Os CH, et al. The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol. 2000;151:919鈥?0.
    14. Schenk AD, Werten PJ, Scheuring S, de Groot BL, M眉ller SA, Stahlberg H, et al. The 4.5 A structure of human AQP2. J Mol Biol. 2005;350:278鈥?9.
    15. Klussmann E, Maric K, Wiesner B, Beyermann M, Rosenthal W. Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem. 1999;274:4934鈥?.
    16. Henn V, Edemir B, Stefan E, Wiesner B, Lorenz D, Theilig F, et al. Identification of a novel A-kinase anchoring protein 18 isoform and evidence for its role in the vasopressin-induced aquaporin-2 shuttle in renal principal cells. J Biol Chem. 2004;279:26654鈥?5.
    17. Okutsu R, Rai T, Kikuchi A, Ohno M, Uchida K, Sasaki S, Uchida S. AKAP220 colocalizes with AQP2 in the inner medullary collecting ducts. Kidney Int. 2008;74:1429鈥?3.
    18. Procino G, Carmosino M, Marin O, Brunati AM, Contri A, Pinna LA, et al. Ser-256 phosphorylation dynamics of aquaporin 2 during maturation from the endoplasmic reticulum to the vesicular compartment in renal cells. FASEB J. 2003;17:1886鈥?.
    19. van Balkom BW, Savelkoul PJ, Markovich D, Hofman E, Nielsen S, van der Sluijs P, Deen PM. The role of putative phosphorylation sites in the targeting and shuttling of the aquaporin-2 water channel. J Biol Chem. 2002;277:41473鈥?.
    20. Bouley R, Breton S, Sun T, McLaughlin M, Nsumu NN, Lin HY, et al. Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J Clin Invest. 2000;106:1115鈥?6.
    21. Bouley R, Pastor-Soler N, Cohen O, McLaughlin M, Breton S, Brown D. Stimulation of AQP2 membrane insertion in renal epithelial cells in vitro and in vivo by the cGMP phosphodiesterase inhibitor sildenafil citrate (Viagra). Am J Physiol Renal Physiol. 2005;288:F1103鈥?2.
    22. Fenton RA, Moeller HB, Hoffert JD, Yu MJ, Nielsen S, Knepper MA. Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. Proc Natl Acad Sci USA. 2008;105:3134鈥?.
    23. Hoffert JD, Nielsen J, Yu MJ, Pisitkun T, Schleicher SM, Nielsen S, Knepper MA. Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. Am J Physiol Renal Physiol. 2007;292:F691鈥?00.
    24. Lu HJ, Matsuzaki T, Bouley R, Hasler U, Qin QH, Brown D. The phosphorylation state of serine 256 is dominant over that of serine 261 in the regulation of AQP2 trafficking in renal epithelial cells. Am J Physiol Renal Physiol. 2008;295:F290鈥?.
    25. Moeller HB, Knepper MA, Fenton RA. Serine 269 phosphorylated aquaporin-2 is targeted to the apical membrane of collecting duct principal cells. Kidney Int. 2009;75:295鈥?03.
    26. Moeller HB, MacAulay N, Knepper MA, Fenton RA. Role of multiple phosphorylation sites in the COOH-terminal tail of aquaporin-2 for water transport: evidence against channel gating. Am J Physiol Renal Physiol. 2009;295:F649鈥?7.
    27. Balasubramanian L, Sham JS, Yip KP. Calcium signaling in vasopressin-induced aquaporin-2 trafficking. Pflugers Arch. 2008;456:747鈥?4.
    28. Noda Y, Horikawa S, Katayama Y, et al. Identification of a multiprotein 鈥渕otor鈥?complex binding to water channel aquaporin-2. Biochem Biophys Res Commun. 2005;330:1041鈥?.
    29. Lorenz D, Krylov A, Hahm D, Hagen V, Rosenthal W, Pohl P, et al. Cyclic AMP is sufficient for triggering the exocytic recruitment of aquaporin-2 in renal epithelial cells. EMBO Rep. 2003;4:88鈥?3.
    30. Valenti G, Laera A, Pace G, Aceto G, Lospalluti ML, Penza R, et al. Urinary aquaporin 2 and calciuria correlate with the severity of enuresis in children. J Am Soc Nephrol. 2000;11:1873鈥?1.
    31. Valenti G, Laera A, Gouraud S, Pace G, Aceto G, Penza R, et al. Low-calcium diet in hypercalciuric enuretic children restores AQP2 excretion and improves clinical symptoms. Am J Physiol. 2002;283:F895鈥?03.
    32. Sands JM, Flores F, Kato A, Baum MA, Brown EM, et al. Vasopressin-elicited water and urea permeabilities are altered in IMCD in hypercalcemic rats. Am J Physiol. 1998;274:F978鈥?5.
    33. Procino G, Carmosino M, Tamma G, Gouraud S, Laera A, Riccardi D, et al. Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells. Kidney Int. 2004;66:2245鈥?5.
    34. Nejsum LN, Zelenina M, Aperia A, Fr酶kiaer J, Nielsen S. Bidirectional regulation of AQP2 trafficking and recycling: involvement of AQP2-S256 phosphorylation. Am J Physiol Renal Physiol. 2005;288:F930鈥?.
    35. de Seigneux S, Nielsen J, Olesen ET, Dimke H, Kwon TH, Fr酶kiaer J, Nielsen S. Long-term aldosterone treatment induces decreased apical but increased basolateral expression of AQP2 in CCD of rat kidney. Am J Physiol Renal Physiol. 2007;293:F87鈥?9.
    36. Noda Y, Sasaki S. The role of actin remodeling in the trafficking of intracellular vesicles, transporters, and channels: focusing on aquaporin-2. Pflugers Arch. 2008;456:737鈥?5.
    37. Noda Y, Sasaki S. Actin-binding channels. Prog Brain Res. 2008;170:551鈥?.
    38. Tamma G, Wiesner B, Furkert J, Hahm D, Oksche A, Schaefer M, et al. The prostaglandin E2 analogue sulprostone antagonizes vasopressin-induced antidiuresis through activation of Rho. J Cell Sci. 2003;116:3285鈥?4.
    39. Tamma G, Carmosino M, Svelto M, Valenti G. Bradykinin signaling counteracts cAMP-elicited aquaporin 2 translocation in renal cells. J Am Soc Nephrol. 2005;16:2881鈥?.
    40. Noda Y, Horikawa S, Furukawa T, Hirai K, Katayama Y, Asai T, et al. Aquaporin-2 trafficking is regulated by PDZ-domain containing protein SPA-1. FEBS Lett. 2004;568:139鈥?5.
    41. Noda Y, Sasaki S. Molecular mechanisms and drug development in aquaporin water channel diseases: molecular mechanism of water channel aquaporin-2 trafficking. J Pharmacol Sci. 2004;96:249鈥?4.
    42. Harazaki M, Kawai Y, Su L, Hamazaki Y, Nakahata T, Minato N, Hattori M. Specific recruitment of SPA-1 to the immunological synapse: involvement of actin-bundling protein actinin. Immunol Lett. 2004;92:221鈥?.
    43. Kometani K, Aoki M, Kawamata S, Shinozuka Y, Era T, Taniwaki M, et al. Role of SPA-1 in phenotypes of chronic myelogenous leukemia induced by BCR-ABL-expressing hematopoietic progenitors in a mouse model. Cancer Res. 2006;66:9967鈥?6.
    44. Kuwahara M, Iwai K, Ooeda T, Igarashi T, Ogawa E, Katsushima Y, et al. Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. Am J Hum Genet. 2001;69:738鈥?8.
    45. Kuwahara M, Asai T, Terada Y, Sasaki S. The C-terminal tail of aquaporin-2 determines apical trafficking. Kidney Int. 2005;68:1999鈥?009.
    46. Tajika Y, Matsuzaki T, Suzuki T, Ablimit A, Aoki T, Hagiwara H, et al. Differential regulation of AQP2 trafficking in endosomes by microtubules and actin filaments. Histochem Cell Biol. 2005;124:1鈥?2.
    47. Chou CL, Christensen BM, Frische S, Vorum H, Desai RA, Hoffert JD, et al. Non-muscle myosin II and myosin light chain kinase are downstream targets for vasopressin signaling in the renal collecting duct. J Biol Chem. 2004;279:49026鈥?5.
    48. Nedvetsky PI, Stefan E, Frische S, Santamaria K, Wiesner B, Valenti G, et al. A Role of myosin Vb and Rab11-FIP2 in the aquaporin-2 shuttle. Traffic. 2007;8:110鈥?3.
    49. Brown D, Breton S, Ausiello DA, Marshansky V. Sensing, signaling and sorting events in kidney epithelial cell physiology. Traffic. 2009;10:275鈥?4.
    50. Procino G, Barbieri C, Tamma G, De Benedictis L, Pessin JE, Svelto M, Valenti G. AQP2 exocytosis in the renal collecting duct-involvement of SNARE isoforms and the regulatory role of Munc18b. J Cell Sci. 2008;121:2097鈥?06.
    51. Brown D, Orci L. Vasopressin stimulates formation of coated pits in rat kidney collecting ducts. Nature. 1983;302:253鈥?.
    52. Sun TX, Van Hoek A, Huang Y, Bouley R, McLaughlin M, Brown D. Aquaporin-2 localization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin. Am J Physiol. 2002;282:F998鈥?011.
    53. Lu H, Sun TX, Bouley R, Blackburn K, McLaughlin M, Brown D. Inhibition of endocytosis causes phosphorylation (S256)-independent plasma membrane accumulation of AQP2. Am J Physiol. 2004;286:F233鈥?3.
    54. Lu HA, Sun TX, Matsuzaki T, Yi XH, Eswara J, Bouley R, et al. Heat shock protein 70 interacts with aquaporin-2 (AQP2) and regulates its trafficking. J Biol Chem. 2007;282:28721鈥?2.
    55. Kamsteeg EJ, Duffield AS, Konings IB, Spencer J, Pagel P, Deen PM, et al. MAL decreases the internalization of the aquaporin-2 water channel. Proc Natl Acad Sci USA. 2007;104:16696鈥?01.
    56. Kamsteeg EJ, Hendriks G, Boone M, Konings IB, Oorschot V, van der Sluijs P, et al. Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci USA. 2006;103:18344鈥?.
    57. van Balkom BW, Boone M, Hendriks G, Kamsteeg EJ, Robben JH, Stronks HC, et al. LIP5 Interacts with aquaporin 2 and facilitates its lysosomal degradation. J Am Soc Nephrol. 2009;20:990鈥?001.
    58. Noda Y, Horikawa S, Katayama Y, Sasaki S. Water channel aquaporin-2 directly binds to actin. Biochem Biophys Res Commun. 2004;322:740.
    59. Noda Y, Sasaki S. Trafficking mechanism of water channel aquaporin-2. Biol Cell. 2005;97:885鈥?2.
    60. Noda Y, Horikawa S, Kanda E, Yamashita M, Meng H, Eto K, et al. Reciprocal interaction with G-actin and tropomyosin is essential for aquaporin-2 trafficking. J Cell Biol. 2008;182:587鈥?01.
    61. Kuwahara M, Fushimi K, Terada Y, Bai L, Marumo F, Sasaki S. cAMP-dependent phosphorylation stimulates water permeability of aquaporin-collecting duct water channel protein expressed in Xenopus oocytes. J Biol Chem. 1995;270:10384鈥?.
    62. Moeller HB, MacAulay N, Knepper MA, Fenton RA. Role of multiple phosphorylation sites in the COOH-terminal tail of aquaporin-2 for water transport: evidence against channel gating. Am J Physiol Renal Physiol. 2009;296:F649鈥?7.
    63. Lande MB, Jo I, Zeidel ML, Somers M, Harris HW Jr. Phosphorylation of aquaporin-2 does not alter the membrane water permeability of rat papillary water channel-containing vesicles. J Biol Chem. 1996;271:5552鈥?.
    64. Eto K, Noda Y, Horikawa S, Uchida S, Sasaki S. Phosphorylation of aquaporin-2 regulates its water permeability. J Biol Chem. 2010;285:40777鈥?4.
    65. Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW. Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci USA. 1993;90:11663鈥?.
    66. DiGiovanni SR, Nielsen S, Christensen EI, Knepper MA. Regulation of collecting duct water channel expression by vasopressin in Brattleboro rat. Proc Natl Acad Sci USA. 1994;91:8984鈥?.
    67. Hayashi M, Sasaki S, Tsuganezawa H, Monkawa T, Kitajima W, Konishi K, et al. Expression and distribution of aquaporin of collecting duct are regulated by vasopressin V2 receptor in rat kidney. J Clin Invest. 1994;94:1778鈥?3.
    68. Terris J, Ecelbarger CA, Nielsen S, Knepper MA. Long-term regulation of four renal aquaporins in rats. Am J Physiol. 1996;271:F414鈥?2.
    69. Ecelbarger CA, Chou CL, Lee AJ, DiGiovanni SR, Verbalis JG, Knepper MA. Escape from vasopressin-induced antidiuresis: role of vasopressin resistance of the collecting duct. Am J Physiol. 1998;274:F1161鈥?.
    70. Kasono K, Saito T, Saito T, Tamemoto H, Yanagidate C, Uchida S, et al. Hypertonicity regulates the aquaporin-2 promoter independently of arginine vasopressin. Nephrol Dial Transplant. 2005;20:509鈥?5.
    71. Saito T, Saito T, Kasono K, Tamemoto H, Kawakami M, Sasaki S, Ishikawa SE. Hypotonicity reduces the activity of murine aquaporin-2 promoter induced by dibutyryl cAMP. Exp Physiol. 2008;93:1147鈥?6.
    72. Hasler U, Nunes P, Bouley R, Lu HA, Matsuzaki T, Brown D. Acute hypertonicity alters aquaporin-2 trafficking and induces a MAP kinase-dependent accumulation at the plasma membrane of renal epithelial cells. J Biol Chem. 2008;283:26643鈥?1.
    73. van Balkom BW, van Raak M, Breton S, Pastor-Soler N, Bouley R, van der Sluijs P, et al. Hypertonicity is involved in redirecting the aquaporin-2 water channel into the basolateral, instead of the apical, plasma membrane of renal epithelial cells. J Biol Chem. 2003;278:1101鈥?.
    74. Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol. 2001;532:3鈥?6.
    75. Tamma G, Procino G, Strafino A, Bononi E, Meyer G, Paulmichl M, et al. Hypotonicity induces aquaporin-2 internalization and cytosol-to-membrane translocation of ICln in renal cells. Endocrinology. 2007;148:1118鈥?0.
    76. Li YH, Eto K, Horikawa S, Uchida S, Sasaki S, Li XJ, Noda Y. Aquaporin-2 regulates cell volume recovery via tropomyosin. Int J Biochem Cell Biol. 2009;41:2466鈥?6.
    77. Loonen AJ, Knoers NV, van Os CH, Deen PM. Aquaporin 2 mutations in nephrogenic diabetes insipidus. Semin Nephrol. 2008;28:252鈥?5.
    78. Savelkoul PJ, De Mattia F, Li Y, Kamsteeg EJ, Konings IB, van der Sluijs P, Deen PM. p. R254Q mutation in the aquaporin-2 water channel causing dominant nephrogenic diabetes insipidus is due to a lack of arginine vasopressin-induced phosphorylation. Hum Mutat. 2009;30:E891鈥?03.
    79. de Mattia F, Savelkoul PJ, Kamsteeg EJ, Konings IB, van der Sluijs P, Mallmann R, et al. Lack of arginine vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2-R254L explains dominant nephrogenic diabetes insipidus. J Am Soc Nephrol. 2005;16:2872鈥?0.
    80. Kamsteeg EJ, Savelkoul PJ, Hendriks G, Konings IB, Nivillac NM, Lagendijk AK, et al. Missorting of the Aquaporin-2 mutant E258聽K to multivesicular bodies/lysosomes in dominant NDI is associated with its monoubiquitination and increased phosphorylation by PKC but is due to the loss of E258. Pflugers Arch. 2008;455:1041鈥?4.
    81. Asai T, Kuwahara M, Kurihara H, Sakai T, Terada Y, Marumo F, Sasaki S. Pathogenesis of nephrogenic diabetes insipidus by aquaporin-2 C-terminus mutations. Kidney Int. 2003;64:2鈥?0.
    82. Sohara E, Rai T, Yang SS, Uchida K, Nitta K, Horita S, et al. Pathogenesis and treatment of autosomal-dominant nephrogenic diabetes insipidus caused by an aquaporin 2 mutation. Proc Natl Acad Sci USA. 2006;103:14217鈥?2.
    83. Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS. Neonatal mortality in an aquaporin-2 knock-in mouse model of recessive nephrogenic diabetes insipidus. J Biol Chem. 2001;276:2775鈥?.
    84. Lloyd DJ, Hall FW, Tarantino LM, Gekakis N. Diabetes insipidus in mice with a mutation in aquaporin-2. PLoS Genet. 2005;1(2):e20.
    85. Gr眉nfeld JP, Rossier BC. Lithium nephrotoxicity revisited. Nat Rev Nephrol. 2009;5:270鈥?.
    86. Rao R, Zhang MZ, Zhao M, Cai H, Harris RC, Breyer MD, et al. Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. Am J Physiol Renal Physiol. 2005;288:F642鈥?.
    87. Nielsen J, Hoffert JD, Knepper MA, Agre P, Nielsen S, Fenton RA. Proteomic analysis of lithiuminduced nephrogenic diabetes insipidus: mechanisms for aquaporin 2 down-regulation and cellular proliferation. Proc Natl Acad Sci USA. 2008;105:3634鈥?.
    88. Christensen BM, Marples D, Kim YH, Wang W, Fr酶kiaer J, Nielsen S. Changes in cellular composition of kidney collecting duct cells in rats with lithium-induced NDI. Am J Physiol Cell Physiol. 2004;286:C952鈥?4.
    89. Wang W, Li C, Kwon TH, Knepper MA, Fr酶kiaer J, Nielsen S. AQP3, p-AQP2, and AQP2 expression is reduced in polyuric rats with hypercalcemia: prevention by cAMP-PDE inhibitors. Am J Physiol Renal Physiol. 2002;283:F1313鈥?5.
    90. Wang W, Kwon TH, Li C, Fr酶kiaer J, Knepper MA, Nielsen S. Reduced expression of Na-K-2Cl cotransporter in medullary TAL in vitamin D-induced hypercalcemia in rats. Am J Physiol Renal Physiol. 2002;282:F34鈥?4.
    91. Li C, Wang W, Knepper MA, Nielsen S, Fr酶kiaer J. Downregulation of renal aquaporins in response to unilateral ureteral obstruction. Am J Physiol Renal Physiol. 2003;284:F1066鈥?9.
    92. Apostol E, Ecelbarger CA, Terris J, Bradford AD, Andrews P, Knepper MA. Reduced renal medullary water channel expression in puromycin aminonucleoside鈥攊nduced nephrotic syndrome. J Am Soc Nephrol. 1997;8:15鈥?4.
    93. Bohlin AB, Berg U. Renal water handling in minimal change nephrotic syndrome. Int J Pediat Nephrol. 1984;5:93鈥?.
    94. Fern谩ndez-Llama P, Andrews P, Ecelbarger CA, Nielsen S, Knepper M. Concentrating defect in experimental nephrotic syndrone: altered expression of aquaporins and thick ascending limb Na+ transporters. Kidney Int. 1998;54:170鈥?.
    95. Mouri T, Inoue T, Nonoguchi H, Nakayama Y, Miyazaki H, Matsuzaki T, et al. Acute and chronic metabolic acidosis interferes with aquaporin-2 translocation in the rat kidney collecting ducts. Hypertens Res. 2009;32:358鈥?3.
    96. Szatalowicz VL, Arnold PE, Chaimovitz C, Bichet D, Berl T, Schrier RW. Radioimmunoassay of plasma arginine vasopressin in hyponatremic patients with congestive heart failure. N Engl J Med. 1981;305:263鈥?.
    97. Schrier RW. Vasopressin and aquaporin 2 in clinical disorders of water homeostasis. Semin Nephrol. 2008;28:289鈥?6.
    98. Nielsen S, Terris J, Andersen D, Ecelbarger C, Frokiaer J, Jonassen T, et al. Congestive heart failure in rats in associated with increased expression and targeting of aquaporin-2 water channel in collecting duct. Proc Natl Acad Sci USA. 1997;94:5450鈥?.
    99. Xu DL, Martin PY, Ohara M, St John J, Pattison T, Meng X, et al. Upregulation of aquaporin-2 water channel expression in chronic heart failure. J Clin Invest. 1997;99:1500鈥?.
    100. Gheorghiade M, Gattis WA, O鈥機onnor CM, Adams KF Jr, Elkayam U, Barbagelata A, et al. Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. JAMA. 2004;291:1963鈥?1.
    101. Schrier RW, Gross P, Gheorghiade M, Berl T, Verbalis JG, Czerwiec FS, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355:2099鈥?12.
    102. Abraham WT, Shamshirsaz AA, McFann K, Oren RM, Schrier RW. Aquaretic effect of lixivaptan, an oral non-peptide, selective V2 receptor vasopressin antagonist, in the New York Heart Association functional class II and III chronic heart failure patients. J Am Coll Cardiol. 2006;47:1615鈥?1.
    103. Gheorghiade M, Konstam MA, Burnett JC Jr, Grinfeld L, Maggioni AP, Swedberg K, et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST clinical status trials. JAMA. 2007;297:1332鈥?3.
    104. Asahina Y, Izumi N, Enomoto N, Sasaki S, Fushimi K, Marumo F, et al. Increased gene expression of water channel in cirrhotic rat kidneys. Hepatology. 1995;21:169鈥?3.
    105. Gerbes AL, G眉lberg V, Gin猫s P, Decaux G, Gross P, Gandjini H, et al. Therapy of hyponatremia in cirrhosis with a vasopressin receptor antagonist: a randomized double-blind multicenter trial. Gastroenterology. 2003;124:933鈥?.
    106. Ohara M, Martin PY, Xu DL, St John J, Pattison TA, Kim JK, Schrier RW. Upregulation of aquaporin 2 water channel expression in pregnant rats. J Clin Invest. 1998;101:1076鈥?3.
    107. Chapman AB, Abraham WT, Zamudio S, Coffin C, Merouani A, Young D, et al. Temporal relationships between hormonal and hemodynamic changes in early human pregnancy. Kidney Int. 1998;54:2056鈥?3.
    108. Ishikawa SE, Saito T, Saito T, Kasono K, Funayama H. Pathophysiological role of aquaporin-2 in impaired water excretion. Prog Brain Res. 2008;170:581鈥?.
    109. Saito T, Higashiyama M, Nagasaka S, Sasaki S, Saito T, Ishikawa SE. Role of aquaporin-2 gene expression in hyponatremic rats with chronic vasopressin-induced antidiuresis. Kidney Int. 2001;60:1266鈥?6.
    110. Saito T, Ishikawa S, Abe K, Kamoi K, Yamada K, Shimizu K, et al. Acute aquaresis by the nonpeptide arginine vasopressin (AVP) antagonist OPC-31260 improves hyponatremia in patients with syndrome of inappropriate secretion of antidiuretic hormone (SIADH). J Clin Endocrinol Metab. 1997;82:1054鈥?.
    111. Kazama I, Hatano R, Michimata M, Suzuki K, Arata T, Suzuki M, et al. BSC1 inhibition complements effects of vasopressin V2 receptor antagonist on hyponatremia in SIADH rats. Kidney Int. 2005;67:1855鈥?7.
    112. Kanno K, Sasaki S, Hirata Y, Ishikawa S, Fushimi K, Nakanishi S, et al. Urinary excretion of aquaporin-2 in patients with diabetes insipidus. N Engl J Med. 1995;332:1540鈥?.
    113. Sasaki S, Ohmoto Y, Mori T, Iwata F, Muraguchi M. Daily variance of urinary excretion of AQP2 determined by sandwich ELISA method. Clin Exp Nephrol. 2012;16(3):406鈥?0.
    114. Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA. 2004;101:13368鈥?3.
    115. Martin PY, Abraham WT, Lieming X, Olson BR, Oren RM, Ohara M, et al. Selective V2-receptor vasopressin antagonism decreases urinary aquaporin-2 excretion in patients with chronic heart failure. J Am Soc Nephrol. 1999;10:2165鈥?0.
    116. Ivarsen P, Fr酶kiaer J, Aagaard NK, Hansen EF, Bendtsen F, Nielsen S, et al. Increased urinary excretion of aquaporin 2 in patients with liver cirrhosis. Gut. 2003;52:1194鈥?.
    117. Buemi M, D鈥橝nna R, Di Pasquale G, Floccari F, Ruello A, Aloisi C, et al. Urinary excretion of aquaporin-2 water channel during pregnancy. Cell Physiol Biochem. 2001;11:203鈥?.
    118. Ishikawa Se, Saito T, Fukagawa A, Higashiyama M, Nakamura T, Kusaka I, et al. Close association of urinary excretion of aquaporin-2 with appropriate and inappropriate arginine vasopressin-dependent antidiuresis in hyponatremia in elderly subjects. J Clin Endocrinol Metab. 2001;86:1665鈥?1.
    119. Robben J, Knoers NV, Deen PM. Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol. 2006;291:F257鈥?0.
    120. Kim GH, Lee JW, Oh YK, Chang HR, Joo KW, Na KY, et al. Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na鈥揅l cotransporter, and epithelial sodium channel. J Am Soc Nephrol. 2004;15:2836鈥?3.
    121. Li JH, Chou CL, Li B, Gavrilova O, Eisner C, Schnermann J, et al. A selective EP4 PGE2 receptor agonist alleviates disease in a new mouse model of X-linked nephrogenic diabetes insipidus. J Clin Invest. 2009;119:3115鈥?6.
    122. Suga H, Nagasaki H, Kondo TA, Okajima Y, Suzuki C, Ozaki N, et al. Novel treatment for lithiuminduced nephrogenic diabetes insipidus rat model using the Sendai-virus vector carrying aquaporin 2 gene. Endocrinology. 2008;149:5803鈥?0.
    123. Konstam MA, Gheorghiade M, Burnett JC Jr, Grinfeld L, Maggioni AP, Swedberg K, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST outcome Trial. JAMA. 2007;297(12):1319鈥?1.
    124. Berl T, Quittnat-Pelletier F, Verbalis JG, Schrier RW, Bichet DG, Ouyang J, et al. Oral Tolvaptan is safe and effective in chronic hyponatremia. J Am Soc Nephrol. 2010;21:705鈥?2.
    125. Soupart A, Gross P, Legros JJ, Alf枚ldi S, Annane D, Heshmati HM, et al. Successful long-term treatment of hyponatremia in syndrome of inappropriate antidiuretic hormone secretion with satavaptan (SR121463B), an orally active nonpeptide vasopressin V2-receptor antagonist. Clin J Am Soc Nephrol. 2006;1:1154鈥?0.
  • 作者单位:Yumi Noda (1) (2)

    1. Department of Nephrology, Nakano General Hospital, 4-59-16 Chuo, Nakano-ku, Tokyo, 164-8607, Japan
    2. Department of Nephrology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
  • ISSN:1437-7799
文摘
The human body is two-thirds water. The ability of ensuring the proper amount of water inside the body is essential for the survival of mammals. The key event for maintenance of body water balance is water reabsorption in the kidney collecting ducts, which is regulated by aquaporin-2 (AQP2). AQP2 is a channel that is exclusively selective for water molecules and never allows permeation of ions or other small molecules. Under normal conditions, AQP2 is restricted within the cytoplasm of the collecting duct cells. However, when the body is dehydrated and needs to retain water, AQP2 relocates to the apical membrane, allowing water reabsorption from the urinary tubule into the cell. Its impairments result in various water balance disorders including diabetes insipidus, which is a disease characterized by a massive loss of water through the kidney, leading to severe dehydration in the body. Dysregulation of AQP2 is also a common cause of water retention and hyponatremia that exacerbate the prognosis of congestive heart failure and hepatic cirrhosis. Many studies have uncovered the regulation mechanisms of AQP2 at the single-molecule level, the whole-body level, and the clinical level. In clinical practice, urinary AQP2 is a useful marker for body water balance (hydration status). Moreover, AQP2 is now attracting considerable attention as a potential therapeutic target for water balance disorders which commonly occur in many diseases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700