The Effect of Polymeric Excipients on the Physical Properties and Performance of Amorphous Dispersions: Part I, Free Volume and Glass Transition
详细信息    查看全文
  • 作者:Jinjiang Li (1)
    Junshu Zhao (1)
    Li Tao (1)
    Jennifer Wang (1) (3)
    Vrushali Waknis (1)
    Duohai Pan (1)
    Mario Hubert (2)
    Krishnaswamy Raghavan (1)
    Jatin Patel (1)

    1. Drug Product Science and Technology
    ; Bristol-Myers Squibb ; New Brunswick ; NJ ; USA
    3. Teva Pharmaceuticals
    ; North Wales ; PA ; 19454 ; USA
    2. Analytical and Bioanalytical Development
    ; Bristol-Myers Squibb ; New Brunswick ; NJ ; USA
  • 关键词:amorphous dispersions ; chain rigidity and solution comformation ; free volume by PALS ; glass transition ; polymeric excipients ; cellulose derivatives and ployvinyl polymers
  • 刊名:Pharmaceutical Research
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:32
  • 期:2
  • 页码:500-515
  • 全文大小:3,088 KB
  • 参考文献:1. Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JAS. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5:1003鈥?9. CrossRef
    2. Yonemochi E. Estimation of physicochemical stability of the formulation using solid dispersion technique and its application for formulation design. Pharm Tech Jpn. 2010;26:661鈥?.
    3. Laitine R, Lobmann K, Strachan CJ, Grohganz H, Rades T. Emerging trends in the stabilization of amorphous drugs. Int J Pharm. 2013;453:65鈥?9. CrossRef
    4. Wegiel LA, Mauer LJ, Edgar KJ, Taylor LS. Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-impact of different polymers. J Pharm Sci. 2013;102:171鈥?4. CrossRef
    5. Paudel A, Humbeeck J, Van Den Mooter G. Theoretical and experimental investigation on the solid solubility and miscibility of naproxen in poly (vinylpyrrolidone). Mol Pharm. 2010;7:1133鈥?8.
    6. Rowe RC, Sheskey PJ, Weller PJ. Handbook of pharmaceutical excipients, 4ed London. UK: Pharmaceutical Press; 2003.
    7. Tanno F, Nishiyama Y, Kokubo H, Obara S. Evaluation of hypromellose acetate succinate (HPMCAS) as a carrier in solid dispersions. Drug Dev Ind Pharm. 2004;30:9鈥?7. CrossRef
    8. Sotthivirat S, McKelvey C, Moser J, Rege B, Xu W, Zhang D. Development of amorphous solid dispersion formulations of a poorly water-soluble drug, MK-0364. Int J Pharm. 2013;452:73鈥?1. CrossRef
    9. Ueda K, Higashi K, Yamamoto K, Moribe K. The effect of HPMCAS functional groups on drug crystallization from the supersaturated state and dissolution improvement. Int J Pharm. 2014;464:205鈥?3. CrossRef
    10. Al-Obaidi H, Lawrence MJ, Shah S, Moghul H, Al-Saden N, Bari F. Effect of drug-polymer interactions on the aqueous solubility of milled solid dispersions. Int J Pharm. 2013;446:100鈥?. CrossRef
    11. Matsumoto T, Zografi G. Physical properties of solid molecular dispersions of indomethacin with poly (vinylpyrrolidone) and poly (vinylpyrrolindone-covinyl-acetate) in relation to indomethacin crystallization. Pharm Res. 1999;16:1722鈥?. CrossRef
    12. Taylor L, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res. 1997;14:1691鈥?. CrossRef
    13. Konno H, Handa T, Alonzo DE, Taylor LS. Effect of polymer type on the dissolution profile of amorphous solid dispersion containing felodipine. Eur J Pharm Biopharm. 2008;70:493鈥?. CrossRef
    14. Ilevbare GA, Liu H, Edgar KJ, Taylor LS. Maintaining supersaturation in aqueous drug solutions: impact of different polymers on induction times. Cryst Growth Des. 2013;13:740鈥?1. CrossRef
    15. Qian F, Wang J, Hartley R, Tao J, Haddadin R, Mathias N, / et al. Solution behavior of PVP-VA and HPMC-AS-based amorphous solid dispersions and their bioavailability implications. Pharm Res. 2012;29:2766鈥?6. CrossRef
    16. Curatolo W, Nightingale JA, Herbig SM. Utility of hydroxypropylmethylcellulose acetate succinate (HPMCAS) for initiation and maintenance of drug supersaturation in the GI milieu. Pharm Res. 2009;26:1419鈥?1. CrossRef
    17. Hiroshi F. Polymer solutions. Amsterdam: Elsevier; 1990.
    18. Kamide K. Cellulose and cellulose derivatives: molecular characterization and its applications. San Diego: Elsevier; 2005.
    19. Zhong YZ, Wolf P. Effect of hydrophobic unit and its distribution on solution properties of vinylpyrrolidone and vinyl acetate copolymers. J Appl Poly Sci. 1999;74:345鈥?2.
    20. Simha R, Weil C. Concerning free volume quantities and the glass temperature. J Macromol Sci-Phys. 1970;4:215鈥?26.
    21. Cohen MH, Turnbull D. Molecular transport in liquids and glasses. J Chem Phys. 1959;31:1164鈥?. CrossRef
    22. Bhardwaj SP, Arora KK, Kwong E, Templeton A, Clas SD, Suryanarayanan R. Correlation between molecular mobility and physical stability of amorphous itraconazole. Mol Pharm. 2013;10:694鈥?00. CrossRef
    23. Simha R, Somcynsky T. On the statistical thermodynamics of spherical and chain molecule fluids. Macromolecules. 1969;2:342鈥?0. CrossRef
    24. Prigogine I. The molecular theory of solutions. Amsterdam: North Holland Publishing Company; 1957.
    25. Moulini茅 P, Utracki LA. Equation of state and free-volume content. In: Utracki LA, Jamieson AM, editors. Polymer physics: from suspensions to nanocomposites and beyond. Hoboken: Wiley; 2010. p. 227鈥?2.
    26. W盲stlund C, Maurer FHJ. Positron lifetime distribution and free volume parameters of PEO/PMMA blends determined with the maximum entropy method. Macromolecules. 1997;30:5870鈥?. CrossRef
    27. Jamieson AM, Olson BG, Nazarenko S. Positron annihilation lifetime studies of free volume in heterogeneous polymer sytems. In: Utracki L, Jamieson AM, editors. Polymer physics: from suspensions to nanocomposites and beyond. Hoboken: Wiley; 2010. p. 473鈥?22.
    28. Fang Z, Xu Y, Tong L. Free-volume hole properties of two thermoplastic nanocomposite based on polymer blends probed by positron annihilation lifetime spectroscopy. J Appl Poly Sci. 2006;102:2463鈥?. CrossRef
    29. Utracki LA. Free volume in molten and glassy polymers and nanocomposites. In: Utracki L, Jamieson AM, editors. Polymer physics: from suspension to nanocomposites and beyond. Hoboken: Wiely; 2010. p. 553鈥?04. CrossRef
    30. Dlubek G, Shaikh MQ, R盲tzke K, Pionteck J, Paluch M, Faupel, F. Subnanometer size free volumes in amorphous verapamil hydrochloride: a positron lifetime and PVT study through Tg in comparison with dielectric relaxation spectroscopy. Euro J Pharm Sci. 2010;41:388鈥?8.
    31. Barto拧 J, 艩au拧a O, Bandzuch P, Zrubcov谩 J, Kri拧tiak J. Free volume factor in supercooled liquid dynamics. J Non-Cryst Solids. 2002;307鈥?10:417鈥?5. CrossRef
    32. Dai GH, Deng Q, Liu J, Shi H, Huang CM, Jean YC. Free-volume hole distribution of polymers by positron annihilation lifetime spectroscopy, Journal de Physique. IV, Colloque, C4 (4th International Workshop on Positron).1993; 233鈥?39.
    33. Sato M. Wormlike chain parameters of cellulose and cellulose derivatives. Polym J. 1983;15:213鈥?3. CrossRef
    34. Taghizadeh MT, Foroutan M. A study on P(VP-VA) hydrophobically associating behavior of water-soluble copolymers. Iran Polym J. 2005;14:47鈥?4.
    35. Campbell JA, Goodwin AA, Ardi MS, Simon GP, Landry-Coltrain CJT. Free volume studies in miscible polymer blend systems. Macromol Symp. 1997;118:383鈥?. CrossRef
    36. Van den Mooter G, Wuyts M, Blaton N, Busson R, Grobet P, Augustijns P, / et al. Physical stabilization of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Euro J Pharm Sci. 2001;12:261鈥?. CrossRef
    37. Zingone G, Moneghini M, Rupena P, Vojnovic D. Characterization and dissolution study of solid dispersions of theophylline and indomethacin with PVP/VA copolymers. S T P Pharm Sci. 1992;2:186鈥?2.
    38. Ford JL. The use of thermal analysis in the study of solid dispersions. Drug Dev Ind Pharm. 1987;13:(9):1741鈥?7.
    39. Kanaujia P, Lau G, Ng WK, Widjaja E, Hanefeld A, Fischbach M, / et al. Nanoparticle formation and growth during / in vitro dissolution of ketoconazole dolid dispersion. J Pharm Sci. 2011;100:2876鈥?5. CrossRef
    40. Yamakawa H. Helical wormlike chains in polymer solutions. New York: Springer; 1997. CrossRef
    41. Kamide K, Saito M. Cellulose and cellulose derivatives: recent advances in physical chemistry. Adv Polym Sci (Biopolymers). 1987;83:1鈥?7. CrossRef
    42. Tao SJ. Positronium annihilation in molecular substances. J Chem Phys. 1972;56:5499鈥?10. CrossRef
    43. Eldrup M, Lightbody D, Sherwood NJ. The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys. 1981;63:51鈥?. CrossRef
    44. Eldrup M, Vehanen A, Schultz PJ, Lynn KG. Positronium formation and diffusion in a molecular solid studied with variable-energy positron. Phys Rev Lett. 1983;51:2007鈥?0. CrossRef
    45. Kwei TK, Pearce EM, Pennacchia JR, Charton M. Correlation between the glass transition temperatures of polymer mixtures and intermolecular forces parameters. Macromolecules. 1987;20:1174鈥?. CrossRef
    46. Schneider HA, Di Marzio EA. The glass temperature of polymer blends: comparison of both the free volume and the entropy prediction with data. Polymer. 1992;16:3453鈥?1. CrossRef
    47. Liu DS, Shen Q, Ding HG, Zhong L. Influence of the components on Tg of cellulose/poly(ethylene glycol) and model. Xianweisu Kexue Yu Jishu. 2006;14:40鈥?5.
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Pharmacology and Toxicology
    Pharmacy
    Biochemistry
    Medical Law
    Biomedical Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-904X
文摘
Purpose To investigate the structural effect of polymeric excipients on the behavior of free volume of drug-polymer dispersions in relation to glass transition. Methods Two drugs (indomethacin and ketoconazole) were selected to prepare amorphous dispersions with PVP, PVPVA, HPC, and HPMCAS through spray drying. The physical attributes of the dispersions were characterized using SEM and PXRD. The free volume (hole-size) of the dispersions along with drugs and polymers was measured using positron annihilation lifetime spectroscopy (PALS). Their glass transition temperatures (Tgs) were determined using DSC and DMA. FTIR spectra were recorded to identify hydrogen bonding in the dispersions. Results The chain structural difference-flexible (PVP and PVPVA) vs. inflexible (HPC and HPMCAS)-significantly impacts the free volume and Tgs of the dispersions as well as their deviation from ideality. Relative to Tg, free volume seems to be a better measure of hydrogen bonding interaction for the dispersions of PVP, HPC, and HPMCAS. The free volume of polymers and their dispersions in general appears to be related to their conformations in solution. Conclusions Both the backbone chain rigidity of polymers as well as drug-polymer interaction can impact the free volume and glass transition behaviors of the dispersions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700