Accelerating Sparse Arithmetic in the Context of Newton’s Method for Small Molecules with Bond Constraints
详细信息    查看全文
  • 关键词:Newton’s method ; Non ; linear equations ; Molecular dynamics ; Constraints ; SHAKE ; RATTLE ; LINCS ; Compiled code approach ; Vector level parallelism ; Vectorizing compiler ; SIMD
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:9573
  • 期:1
  • 页码:160-171
  • 全文大小:299 KB
  • 参考文献:1.Adcock, S.A., McCammon, J.A.: Molecular dynamics: survey of methods for simulating the activity of proteins. Chem. Rev. 5, 1589–1615 (2006)CrossRef
    2.Frenkel, D., Smit, B.: Understanding Molecular Simulations: From Algorithms to Applications, 2nd edn. Academic Press, San Diego (2002)MATH
    3.Moraitakis, G., Purkiss, A.G., Goodfellow, J.M.: Simulated dynamics and biological macromolecules. Rep. Prog. Phys. 66, 383 (2003)CrossRef
    4.Liu, H., Sale, K.L., Holmes, B.M., Simmons, B.A., Singh, S.: Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J. Phys. Chem. B 114(12), 4293–4301 (2010)CrossRef
    5.Li, C., Tan, T., Zhang, H., Feng, W.: Analysis of the conformational stability and activity of candida antarctica Lipase B in organic solvents: insights from MD and QM simulations. J. Bio. Chem. 285, 28434–28441 (2010)CrossRef
    6.Skoulidas, A.I., Sholl, D.S.: Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations. J. Phys. Chem. B. 33, 15760–15768 (2005)CrossRef
    7.García-Risueño, P., Echenique, P., Alonso, J.L.: Exact and efficient calculation of Lagrange multipliers in biological polymers with constrained bond lengths and bond angles: Proteins and nucleic acids as example cases. J. Comput. Chem. 32, 3039–3046 (2011)CrossRef
    8.Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.C.: Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977)CrossRef
    9.Andersen, H.C.: Rattle: a “velocity” version of the Shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52, 24–34 (1983)CrossRef MATH
    10.Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M.: LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997)CrossRef
    11.Barth, E., Kuczera, K., Leimkuhler, B., Skeel, R.: Algorithms for constrained molecular dynamics. J. Comput. Chem. 16(10), 1192–1209 (1995)CrossRef
    12.Bailey, A.G., Lowe, C.P.: MILCH SHAKE: an efficient method for constraint dynamics applied to alkanes. J. Comput. Chem. 30(15), 2485–2493 (2009)CrossRef
    13.Gustavson, F.G., Liniger, W., Willooughby, R.: Symbolic generation of an optimal Crout algorithm for sparse systems of linear equations. J. Assoc. Comput. Mach. 17, 87–100 (1970)CrossRef MATH
    14.Duff, I.S.: The impact of high-performance computing in the solution of linear systems: trends and problems. J. Comput. Appl. Math. 123, 515–530 (2000)MathSciNet CrossRef MATH
    15.Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)CrossRef MATH
  • 作者单位:Carl Christian Kjelgaard Mikkelsen (19)
    Jesús Alastruey-Benedé (20)
    Pablo Ibáñez-Marín (20)
    Pablo García Risueño (21) (22) (23)

    19. Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden
    20. Instituto Universitario de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza, Spain
    21. Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
    22. Fritz-Haber Institut (MPG), Berlin, Germany
    23. Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain
  • 丛书名:Parallel Processing and Applied Mathematics
  • ISBN:978-3-319-32149-3
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
文摘
Molecular dynamics is used to study the time evolution of systems of atoms. It is common to constrain bond lengths in order to increase the time step of the simulation. Here we accelerate Newton’s method for solving the constraint equations for a system consisting of many identical small molecules. Starting with a modular and generic base code using a sequential data layout, we apply three different optimization techniques. The compiled code approach is used to generate subroutines equivalent to a single step of Newton’s method for a user specified molecule. Differing from the generic subroutines, these specific routines contain no loops and no indirect addressing. Interleaving the data describing different molecules generates vectorizable loops. Finally, we apply task fusion. The simultaneous application of all three techniques increases the speed of the base code by a factor of 15 for single precision calculations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700