Fully coupled time-domain simulation of dynamic positioning semi-submersible platform using dynamic surface control
详细信息    查看全文
  • 作者:Haizhi Liang (1)
    Luyu Li (2)
    Jinping Ou (2)
  • 关键词:dynamic positioning system ; coupled analysis ; dynamic surface control ; RBF NNs ; adaptive control
  • 刊名:Journal of Ocean University of China
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:13
  • 期:3
  • 页码:407-414
  • 全文大小:
  • 参考文献:1. Balchen, J. G., Jenseen, N. A., and S?lid, S., 1976. Dynamic positioning using Kalman filtering and optimal control theory. / IFAC/IFIP Symposium on Automation in Offshore Oil Field Operation, Amsterdam, 183-86.
    2. Balchen, J. G., Jenseen, N. A., Mathisen, E., and Saelid, S., 1980. A dynamic positioning system based on Kalman filtering and optimal control model. / Modeling, Identification and Control, 1(3): 135-63. CrossRef
    3. Dai, Y. S., 1998. / Potential Flow Theory of Ship Motions in Waves in Frequency and Time Domain. National Defence Industry Press, Beijing, 107-17.
    4. Fossen, T. I., and Gr?vlen, A., 1998. Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping. / IEEE Transactions on Control systems Technology, 6(1): 121-28. CrossRef
    5. Li, Y. H., Qiang, S, Zhuang, X. Y., and Kaynak, O., 2004. Robust and adaptive back-stepping control for nonlinear systems using RBF neural networks. / IEEE Transactions on Neural Networks, 15(3): 693-01. CrossRef
    6. Qiao, D. S., Zhu, H, Ou, J. P., and Wu, F., 2011. Numerical simulation for truncated model tests of deepwater semi-submersible platform with viscous damper compensated system in mooring lines. / Proceedings of the International Offshore and Polar Engineering Conference, ISOPE, Hawaii, USA, 557-64.
    7. Skjetne, R., Fossen, T. I., and Kokotovic P. V., 2005. Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory. / Automatica, 41: 289-98. CrossRef
    8. Skjetne, R., Smogeli, ?. N., and Fossen, T. I., 2004. A nonlinear ship maneuvering model: Identification and adaptive control with experiment for a model ship. / Modeling, Identification and Control, 25(1): 3-7. CrossRef
    9. S?rensen, A. J., 2011. A survey of dynamic positioning control systems. / Annual Reviews in Control, 35: 123-36. control.2011.03.008" target="_blank" title="It opens in new window">CrossRef
    10. S?rensen, A. J., Sagatun, S. I., and Fossen, T. I., 1996. Design of a dynamic positioning system using model-based control. / Control Engineering Practice, 4(3): 359-68. CrossRef
    11. Swaroop, D., Gerdes, J. C., Yip, P. P., and Herdrick, J. K., 1997. Dynamic surface control of nonlinear systems. / Proceedings of the American Control Conference, 3028-034.
    12. Tannuri, E. A., Agostinho, A. C., Morishita, H. M., and Moratelli Jr., L., 2010. Dynamic positioning systems: An experimental analysis of sliding model control. / Control Engineering Practice, 18(10): 1121-132. CrossRef
    13. Tannuri, E. A., Kubota, L. K., and Pesce, C. P., 2006. Adaptive control strategy for the dynamic positioning of a shuttle tanker during offloading operations. / Journal of Offshore Mechanics and Arctic Engineering, 128: 203-10. CrossRef
    14. Wang, D., and Huang, J., 2005. Neural networks-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. / IEEE Transactions on Neural Networks, 16(1): 195-02. CrossRef
    15. Zhang, Y. H., and Jiang, J. G., 2010. A novel disturbances compensating dynamic positioning of dredgers based on adaptive dynamic surface control. / Transactions on Systems and Control, 5(5): 323-32.
  • 作者单位:Haizhi Liang (1)
    Luyu Li (2)
    Jinping Ou (2)

    1. Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, P. R. China
    2. Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
  • ISSN:1993-5021
文摘
A fully coupled 6-degree-of-freedom nonlinear dynamic model is presented to analyze the dynamic response of a semi-submersible platform which is equipped with the dynamic positioning (DP) system. In the control force design, a dynamic model of reference linear drift frequency in the horizontal plane is introduced. The dynamic surface control (DSC) is used to design a control strategy for the DP. Compared with the traditional back-stepping methods, the dynamic surface control combined with radial basis function (RBF) neural networks (NNs) can avoid differentiating intermediate variables repeatedly in every design step due to the introduction of a first order filter. Low frequency motions obtained from total motions by a low pass filter are chosen to be the inputs for the RBF NNs which are used to approximate the low frequency wave force. Considering the propellers-wear and tear, the effect of filtering frequencies for the control force is discussed. Based on power consumptions and positioning requirements, the NN centers are determined. Moreover, the RBF NNs used to approximate the total wave force are built to monitor the disturbances. With the DP assistance, the results of fully coupled dynamic response simulations are given to illustrate the effectiveness of the proposed control strategy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700