Protein O-mannosylation is crucial for human mesencyhmal stem cells fate
详细信息    查看全文
  • 作者:E. Ragni ; M. Lommel ; M. Moro ; M. Crosti ; C. Lavazza…
  • 关键词:Mesenchymal stem cells ; O ; Mannosylation ; Congenital muscular dystrophy ; Differentiation ; Extracellular vesicles ; POMT1
  • 刊名:Cellular and Molecular Life Sciences (CMLS)
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:73
  • 期:2
  • 页码:445-458
  • 全文大小:3,004 KB
  • 参考文献:1.Cook D, Genever P (2013) Regulation of mesenchymal stem cell differentiation. Adv Exp Med Biol 786:213–229. doi:10.​1007/​978-94-007-6621-1_​12 PubMed CrossRef
    2.Bossolasco P, Corti S, Strazzer S, Borsotti C, Del Bo R, Fortunato F, Salani S, Quirici N, Bertolini F, Gobbi A et al (2004) Skeletal muscle differentiation potential of human adult bone marrow cells. Exp Cell Res 295(1):66–78PubMed CrossRef
    3.Montelatici E, Baluce B, Ragni E, Lavazza C, Parazzi V, Mazzola R, Cantarella G, Brambilla M, Giordano R, Lazzari L (2014) Defining the identity of human adipose-derived mesenchymal stem cells. Biochem Cell Biol 20:1–9
    4.Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMed CrossRef
    5.Uezumi A, Ojima K, Fukada S, Ikemoto M, Masuda S, Miyagoe-Suzuki Y, Takeda S (2006) Functional heterogeneity of side population cells in skeletal muscle. Biochem Biophys Res Commun 341:864–873PubMed CrossRef
    6.Laino G, Graziano A, d’Aquino R, Pirozzi G, Lanza V, Valiante S, De Rosa A, Naro F, Vivarelli E, Papaccio G (2006) An approachable human adult stem cell source for hard-tissue engineering. J Cell Physiol 206:693–701PubMed CrossRef
    7.De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942PubMed CrossRef
    8.Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337PubMed CrossRef
    9.Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110PubMed CrossRef
    10.Barilani M, Lavazza C, Viganò M, Montemurro T, Boldrin V, Parazzi V, Montelatici E, Crosti M, Moro M, Giordano R et al (2015) Dissection of the cord blood stromal component reveals predictive parameters for culture outcome. Stem Cells Dev 24(1):104–114. doi:10.​1089/​scd.​2014.​0160 PubMed PubMedCentral CrossRef
    11.Bernardo ME, Fibbe WE (2012) Safety and efficacy of mesenchymal stromal cell therapy in autoimmune disorders. Ann N Y Acad Sci 1266:107–117. doi:10.​1111/​j.​1749-6632.​2012.​06667.​x.​Review PubMed CrossRef
    12.Boregowda SV, Phinney DG (2012) Therapeutic applications of mesenchymal stem cells: current outlook. BioDrugs 26(4):201–208. doi:10.​2165/​11632790-000000000-00000 PubMed CrossRef
    13.György B, Hung ME, Breakefield XO, Leonard JN (2015) Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol 55:439–464. doi:10.​1146/​annurevEVs-pharmtox-010814-124630 PubMed PubMedCentral CrossRef
    14.Roth Z, Yehezkel G, Khalaila I (2012) Identification and quantification of protein glycosylation. Int J Carbohydr Chem 2012. doi:10.​1155/​2012/​640923
    15.Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) (2009) Essentials of glycobiology, Chapter 6, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. ISBN-13: 9780879697709
    16.Hamouda H, Ullah M, Berger M, Sittinger M, Tauber R, Ringe J, Blanchard V (2013) N-glycosylation profile of undifferentiated and adipogenically differentiated human bone marrow mesenchymal stem cells: towards a next generation of stem cell markers. Stem Cells Dev 22(23):3100–3113. doi:10.​1089/​scd.​2013.​0108 PubMed PubMedCentral CrossRef
    17.Wells L (2013) The o-mannosylation pathway: glycosyltransferases and proteins implicated in congenital muscular dystrophy. J Biol Chem 288(10):6930–6935. doi:10.​1074/​jbc.​R112.​438978 PubMed PubMedCentral CrossRef
    18.Manya H, Chiba A, Yoshida A, Wang X, Chiba Y, Jigami Y, Margolis RU, Endo T (2004) Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc Natl Acad Sci USA 101(2):500–505PubMed PubMedCentral CrossRef
    19.Willer T, Lee H, Lommel M, Yoshida-Moriguchi T, de Bernabe DB, Venzke D, Cirak S, Schachter H, Vajsar J, Voit T (2012) ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome. Nat Genet 44:575–580PubMed PubMedCentral CrossRef
    20.Endo T (2015) Glycobiology of α-dystroglycan and muscular dystrophy. J Biochem 157(1):1–12. doi:10.​1093/​jb/​mvu066 PubMed CrossRef
    21.Winder SJ (2001) The complexities of dystroglycan. Trends Biochem Sci 26:118–124PubMed CrossRef
    22.Goddeeris MM, Wu B, Venzke D, Yoshida-Moriguchi T, Saito F, Matsumura K, Moore SA, Campbell KP (2013) LARGE glycans on dystroglycan function as a tunable matrix scaffold to prevent dystrophy. Nature 503(7474):136–140. doi:10.​1038/​nature12605 PubMed PubMedCentral CrossRef
    23.Yoshida-Moriguchi T, Willer T, Anderson ME, Venzke D, Whyte T, Muntoni F, Lee H, Nelson SF, Yu L, Campbell KP (2013) SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341(6148):896–899. doi:10.​1126/​science.​1239951 PubMed CrossRef
    24.Inamori K, Yoshida-Moriguchi T, Hara Y, Anderson ME, Yu L, Campbell KP (2012) Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 335:93–96PubMed PubMedCentral CrossRef
    25.Willer T, Inamori K, Venzke D, Harvey C, Morgensen G, Hara Y, Valero Beltrán, de Bernabé D, Yu L, Wright KM, Campbell KP (2014) The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation. Elife 3. doi:10.​7554/​eLife.​03941 PubMed PubMedCentral
    26.Yoshida-Moriguchi T, Willer T, Anderson ME, Venzke D, Whyte T, Muntoni F, Lee H, Nelson SF, Yu L, Campbell KP (2013) SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function. Science 341(6148):896–899. doi:10.​1126/​science.​1239951 PubMed CrossRef
    27.Inamori K, Endo T, Gu J, Matsuo I, Ito Y, Fujii S, Iwasaki H, Narimatsu H, Miyoshi E, Honke K, Taniguchi N (2004) N-Acetylglucosaminyltransferase IX acts on the GlcNAc beta 1,2-Man alpha 1-Ser/Thr moiety, forming a 2,6
    anched structure in brain O-mannosyl glycan. J Biol Chem 279(4):2337–2340PubMed CrossRef
    28.Ragni E, Montemurro T, Montelatici E, Lavazza C, Viganò M, Rebulla P, Giordano R, Lazzari L (2013) Differential microRNA signature of human mesenchymal stem cells from different sources reveals an “environmental-niche memory” for bone marrow stem cells. Exp Cell Res 319(10):1562–1574. doi:10.​1016/​j.​yexcr.​2013.​04.​002 PubMed CrossRef
    29.Ragni E, Viganò M, Rebulla P, Giordano R, Lazzari L (2013) What is beyond a qRT-PCR study on mesenchymal stem cell differentiation properties: how to choose the most reliable housekeeping genes. J Cell Mol Med 17(1):168–180. doi:10.​1111/​j.​1582-4934.​2012.​01660.​x PubMed PubMedCentral CrossRef
    30.Rojek JM, Campbell KP, Oldstone MB, Kunz S (2007) Old World arenavirus infection interferes with the expression of functional alpha-dystroglycan in the host cell. Mol Biol Cell 18(11):4493–4507PubMed PubMedCentral CrossRef
    31.Orchard MG, Neuss JC, Galley CM, Carr A, Porter DW, Smith P, Scopes DI, Haydon D, Vousden K, Stubberfield CR et al (2004) Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1). Bioorg Med Chem Lett 14(15):3975–3978PubMed CrossRef
    32.Arroyo J, Hutzler J, Bermejo C, Ragni E, García-Cantalejo J, Botías P, Piberger H, Schott A, Sanz AB, Strahl S (2011) Functional and genomic analyses of blocked protein O-mannosylation in baker’s yeast. Mol Microbiol 79(6):1529–1546. doi:10.​1111/​j.​1365-2958.​2011.​07537.​x PubMed CrossRef
    33.Lommel M, Winterhalter PR, Willer T, Dahlhoff M, Schneider MR, Bartels MF, Renner-Müller I, Ruppert T, Wolf E, Strahl S (2013) Protein O-mannosylation is crucial for E-cadherin-mediated cell adhesion. Proc Natl Acad Sci USA 110(52):21024–21029. doi:10.​1073/​pnas.​1316753110 PubMed PubMedCentral CrossRef
    34.Yoshida-Moriguchi T, Yu L, Stalnaker SH, Davis S, Kunz S, Madson M, Oldstone MB, Schachter H, Wells L, Campbell KP (2010) O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding. Science 327:88–92PubMed PubMedCentral CrossRef
    35.Dobson CM, Hempel SJ, Stalnaker SH, Stuart R, Wells L (2013) OMannosylation and human disease. Cell Mol Life Sci 70(16):2849–2857. doi:10.​1007/​s00018-012-1193-0 PubMed PubMedCentral CrossRef
    36.Yoshikawa HY, Kawano T, Matsuda T, Kidoaki S, Tanaka MJ (2013) Morphology and adhesion strength of myoblast cells on photocurable gelatin under native and non-native micromechanical environments. Phys Chem B 117(15):4081–4088. doi:10.​1021/​jp4008224 CrossRef
    37.Takeichi M (1995) Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 7:619–627PubMed CrossRef
    38.Tepass U (1999) Genetic analysis of cadherin function in animal morphogenesis. Curr Opin Cell Biol 11:540–548PubMed CrossRef
    39.Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622–634PubMed CrossRef
    40.Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357PubMed CrossRef
    41.Erdmann B, Kirsch FP, Rathjen FG, Moré MI (2003) N-cadherin is essential for retinal lamination in the zebrafish. Dev Dyn 226(3):570–577PubMed CrossRef
    42.Kadowaki M, Nakamura S, Machon O, Krauss S, Radice GL, Takeichi M (2007) N-cadherin mediates cortical organization in the mouse brain. Dev Biol 304(1):22–33PubMed CrossRef
    43.Beltrán-Valero de Bernabé D, Currier S, Steinbrecher A, Celli J, van Beusekom E, van der Zwaag B, Kayserili H et al (2002) Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet 71(5):1033–1043PubMed PubMedCentral CrossRef
    44.Xu L, Meng F, Ni M, Lee Y, Li G (2013) N-cadherin regulates osteogenesis and migration of bone marrow-derived mesenchymal stem cells. Mol Biol Rep 40(3):2533–2539. doi:10.​1007/​s11033-012-2334-0 PubMed CrossRef
    45.Oberlender SA, Tuan RS (1994) Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development 120(1):177–187PubMed
    46.Bian L, Guvendiren M, Mauck RL, Burdick JA (2013) Hydrogels that mimic developmentally relevant matrix and N-cadherin interactions enhance MSC chondrogenesis. Proc Natl Acad Sci USA 110(25):10117–10122. doi:10.​1073/​pnas.​1214100110 PubMed PubMedCentral CrossRef
    47.Haÿ E, Dieudonné FX, Saidak Z, Marty C, Brun J, Da Nascimento S, Sonnet P, Marie PJ (2014) N-cadherin/wnt interaction controls bone marrow mesenchymal cell fate and bone mass during aging. J Cell Physiol 229(11):1765–1775. doi:10.​1002/​jcp.​24629 PubMed CrossRef
    48.Redfield A, Nieman MT, Knudsen KA (1997) Cadherins promote skeletal muscle differentiation in threedimensional cultures. J Cell Biol 138:1323–1331PubMed PubMedCentral CrossRef
    49.Ladoux B, Anon E, Lambert M, Rabodzey A, Hersen P, Buguin A, Silberzan P, Mège RM (2010) Strength dependence of cadherin-mediated adhesions. Biophys J 98(4):534–542. doi:10.​1016/​j.​bpj.​2009.​10.​044 PubMed PubMedCentral CrossRef
    50.Miyagoe-Suzuki Y, Masubuchi N, Miyamoto K, Wada MR, Yuasa S, Saito F, Matsumura K, Kanesaki H, Kudo A, Manya H, Endo T, Takeda S (2009) Reduced proliferative activity of primary POMGnT1-null myoblasts in vitro. Mech Dev 126(3–4):107–116. doi:10.​1016/​j.​mod.​2008.​12.​001 PubMed CrossRef
    51.Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A, Falda M, Bussolati B, Tetta C, Camussi G (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20(5):1053–1067. doi:10.​1681/​ASN.​2008070798 PubMed PubMedCentral CrossRef
    52.Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345. doi:10.​1038/​nbt.​1807 PubMed CrossRef
    53.Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L et al (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19(10):1769–1779. doi:10.​1038/​mt.​2011.​164 PubMed PubMedCentral CrossRef
  • 作者单位:E. Ragni (1)
    M. Lommel (2)
    M. Moro (3)
    M. Crosti (3)
    C. Lavazza (1)
    V. Parazzi (1)
    S. Saredi (4)
    S. Strahl (2)
    L. Lazzari (1)

    1. Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
    2. Centre for Organismal Studies, Cell Chemistry and Center for Molecular Biology, University of Heidelberg, 69120, Heidelberg, Germany
    3. Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi” (INGM), Milan, Italy
    4. Division of Neuromuscular Diseases and Neuroimmunology, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Life Sciences
    Biochemistry
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9071
文摘
Human mesenchymal stem cells (MSC) are promising cell types in the field of regenerative medicine. Although many pathways have been dissected in the effort to better understand and characterize MSC potential, the impact of protein N- or O-glycosylation has been neglected. Deficient protein O-mannosylation is a pathomechanism underlying severe congenital muscular dystrophies (CMD) that start to develop at the embryonic developmental stage and progress in the adult, often in tissues where MSC exert their function. Here we show that O-mannosylation genes, many of which are putative or verified glycosyltransferases (GTs), are expressed in a similar pattern in MSC from adipose tissue, bone marrow, and umbilical cord blood and that their expression levels are retained constant during mesengenic differentiation. Inhibition of the first players of the enzymatic cascade, POMT1/2, resulted in complete abolishment of chondrogenesis and alterations of adipogenic and osteogenic potential together with a lethal effect during myogenic induction. Since to date, no therapy for CMD is available, we explored the possibility of using MSC extracellular vesicles (EVs) as molecular source of functional GTs mRNA. All MSC secrete POMT1 mRNA-containing EVs that are able to efficiently fuse with myoblasts which are among the most affected cells by CMD. Intriguingly, in a pomt1 patient myoblast line EVs were able to partially revert O-mannosylation deficiency and contribute to a morphology recovery. Altogether, these results emphasize the crucial role of protein O-mannosylation in stem cell fate and properties and open the possibility of using MSC vesicles as a novel therapeutic approach to CMD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700