Role of nitrates in the adaptation of fish to hypoxic conditions
详细信息    查看全文
  • 作者:Sergey Dolomatov ; Walery Zukow ; Maciej Dzierzanowski ; Jan Mieszkowski…
  • 关键词:fish ; nitrates ; nitrites ; hypoxia ; nitric oxide cycle
  • 刊名:Water Resources
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:43
  • 期:1
  • 页码:177-183
  • 全文大小:203 KB
  • 参考文献:1.Basireddy, M., Isbell, T.S., Teng, X., et al., Effects of sodium nitrite on ischemia-reperfusion injury in the rat kidney, Am. J. Physiol. Renal Physiol., 2006, vol. 290, no. 4, pp. F779–F786.CrossRef
    2.Beers, J.M., Borley, K.A., and Sidell, B.D., Relationship among circulating hemoglobin, nitric oxide synthase activities and angiogenic poise in redand whiteblooded Antarctic notothenioid fishes, Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 2010, vol. 156, no. 4 pp. 422–429.CrossRef
    3.Ben, J., Lim, T.M., Phang, V.P., and Chan, W.K., Cloning and tissue expression of 6-pyruvoyl tetrahydropterin synthase and xanthine dehydrogenase from Poecilia reticulate, Mar. Biotechnol. (N.Y.), 2003, vol. 5, no. 6 pp. 568–578.CrossRef
    4.Bilbao, E., de Cerio, O.D., Cajaraville, M.P., and Cancio, I., Cloning and expression pattern of peroxisomal enzymes in the mussel Mytilus galloprovincialis and in the thicklip grey mullet Chelon labrosus: generation of new tools to study peroxisome proliferation, Mar. Environ. Res., 2006, vol. 62 (Suppl), pp. S109–112.CrossRef
    5.Calvert, J.W. and Lefer, D.J., Search for related content Myocardial protection by nitrite, Cardiovasc. Res., 2009, vol. 83, no. 2 pp. 195–203.CrossRef
    6.Camargo, J.A. and Alonso, A., Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment, Environ. Int., 2006, vol. 32, no. 6 pp. 831–849.CrossRef
    7.Camargo, J.A., Alonso, A., and Salamanca, A., Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates, Chemosphere, 2005, vol. 58, pp. 1255–1267.CrossRef
    8.Cossins, A.R., Williams, D.R., Foulkes, N.S., et al., Diverse cell-specific expression of myoglobin isoforms in brain, kidney, gill and liver of the hypoxia-tolerant carp and zebrafish, J. Experimental Biol., 2009, vol. 212, pp. 627–638.CrossRef
    9.Doblander, C. and Lackner, R., Metabolism and detoxification of nitrite by trout hepatocytes, Biochim. Biophys. Acta, 1996, vol. 1289, no. 2 pp. 270–274.CrossRef
    10.Dolomatov, S.I., Shekk, P.V., Zukow, W., et al., Features of nitrogen metabolism in fishes, Rev. Fish Biol. Fisheries, 2011, vol. 21, pp. 733–737.CrossRef
    11.Dolomatov, S., Zukow, W., and Brudnicki, R., Role of temperature in regulation of the life cycle of temperate fish, Russ. J. Mar. Biol., 2013, vol. 39, no. 9(2), pp. 81–91.CrossRef
    12.Dolomatov, S., Zukow, W., Hagner–Derengowska, M., et al., Toxic and physiological aspects of metabolism of nitrites and nitrates in the fish organism, J. Health Sci., 2013, vol. 3, no. 2 pp. 68–91.
    13.Dolomatov, S.I., Zukow, W., Novikov, N.Yu., et al., The regulation of osmotic and ionic balance in fish reproduction and in the early stages of ontogeny, Russ. J. Mar. Biol., 2012, vol. 38, no. 5 pp. 365–374.CrossRef
    14.Dolomatov, S., Zukow, W., and Skomarovskiy, D., Features nitrogen metabolism fish and methods neutralize the product of nitrogen metabolism fish aquaculture, J. Health Sci., 2011, vol. 1, no. 3 pp. 13–37.
    15.Ebbesson, L.O.E., Tipsmark, Ch.K., Holmqvist, B., et al., Nitric oxide synthase in the gill of Atlantic salmon: colocalization with and inhibition of Na+, K+ATPase, J. Experimental Biol., 2005, vol. 205, pp. 1011–1017.CrossRef
    16.Edwards, T.M. and Guillette, L.J., Reproductive characteristics of male mosquitofish (Gambusia holbrooki) from nitrate-contaminated springs in Florida, Aquat. Toxicol., 2007, vol. 85, no. 1 pp. 40–47.CrossRef
    17.Edwards, T.M., Miller, H.D., and Guillette, L.J., Water quality influences reproduction in female mosquitofish (Gambusia holbrooki) from eight Florida Springs, Environ. Health Perspect., 2006, vol. 114 no. S–1, pp. 69–75.
    18.Evans, D.H. and Gunderson, M.P., A prostaglandin, not NO,mediates endothelium-dependent dilation in ventral aorta of shark (Squalus acanthias), Am. J. Physiol. Regul. Integr. Comp. Physiol., 1998, vol. 274, no. 4, pp. R1050–R1057.
    19.Evans, D.H., Piermarini, P.M., and Choe, K.P., The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste, Physiol. Rev., 2005, vol. 85, no. 1 pp. 97–177.CrossRef
    20.Feelisch, M., Fernandez, B.O., Bryan, N.S., et al., Tissue processing of nitrite in hypoxia an intricate interplay of nitric oxide-generating and scavenging systems, J. Biol. Chem., 2008, vol. 283, no. 49 pp. 33927–33934.CrossRef
    21.Fish, J.E., Yan, M.S., Matouk, Ch.C., et al., Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones, J. Biol. Chem., 2010, vol. 285, pp. 810–826.CrossRef
    22.Fluck, M., Webster, K.A., Graham, J., et al., Coping with cyclic oxygen availability: evolutionary aspects, Integrative and Comparative Biol., 2007, vol. 47, no. 4 pp. 524–531.CrossRef
    23.Grosell, M. and Jensen, F.B., uptake and excretion in the intestine of the european flounder (Platichthys flesus), J. Experimental Biol., 1999, vol. 202, pp. 2103–2110.
    24.Hannas, B.R., Das, P.C., Li, H., and Leblanc, G.A., Intracellular conversion of environmental nitrate and nitrite to nitric oxide with resulting developmental toxicity to the crustacean Daphnia magna, PLoS One, 2010, vol. 5, no. 8, pp. e12453, DOI: 10.1371/journalpone.0012453.CrossRef
    25.Hansen, M.N. and Jensen, F.B., Nitric oxide metabolites in goldfish under normoxic and hypoxic conditions, J. Experimental Biol., 2010, vol. 213, pp. 3593–3602.CrossRef
    26.Hegazi, M.M., Attia, Z.I., and Ashour, O.A., Oxidative stress and antioxidant enzymes in liver and white muscle of Nile tilapia juveniles in chronic ammonia exposure, Aquat. Toxicol., 2010, vol. 99, no. 2 pp. 118–125.CrossRef
    27.Hendgen-Cotta, U.B., Merx, M.W., Shiva, S., et al., Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemiareperfusion injury, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 29 pp. 10256–10261.CrossRef
    28.Helbo, S. and Fago, A., Allosteric modulation by S-nitrosation in the low–O2 affinity myoglobin from rainbow trout, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, vol. 300, no. 1, pp. R101–108.CrossRef
    29.Hoogewijs, D., Terwilliger, N.B., Webster, K.A., et al., From critters to cancers: bridging comparative and clinical research on oxygen sensing, HIF signaling, and adaptations towards hypoxia, Integrative and Comparative Biol., 2007, vol. 47, no. 4 pp. 552–577.CrossRef
    30.Ingram, Th.E., Pinder, A.G., Bailey, D.M., et al., Lowdose sodium nitrite vasodilates hypoxic human pulmonary vasculature by a means that is not dependent on a simultaneous elevation in plasma nitrite, Am. J. Physiol. Heart Circ. Physiol., 2010, vol. 298, no. 2, pp. H331–H339.CrossRef
    31.Jansson, E., Huang, L., Malkey, R., et al., A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis, Nature Chem. Biol., 2008, vol. 4, no. 7 pp. 411–417.CrossRef
    32.Jensen, F.B., Nitrite disrupts multiple physiological functions in aquatic animals, Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 2003, vol. 135, no. 1 pp. 9–24.CrossRef
    33.Jensen, F.B., Nitric oxide formation from nitrite in zebrafish, J. Experimental Biol., 2007, vol. 210, pp. 3387–3394. NO2–HCO3 CrossRef
    34.Jensen, F.B., The role of nitrite in nitric oxide homeostasis: a comparative perspective, Biochim. Biophys. Acta, 2009, vol. 1787, no. 7 pp. 841–848.CrossRef
    35.Jensen, F.B. and Hansen, M.N., Differential uptake and metabolism of nitrite in normoxic and hypoxic goldfish, Aquat. Toxicol., 2011, vol. 101, no. 2 pp. 318–325.CrossRef
    36.Jensen, F.B. and Rohde, S., Comparative analysis of nitrite uptake and hemoglobin-nitrite reactions in erythrocytes: sorting out uptake mechanisms and oxygenation dependencies, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, vol. 298, no. 4, pp. R972–R982.CrossRef
    37.Kan, W.H., Hsu, J.T., Schwacha, M.G., et al., Selective inhibition of iNOS attenuates trauma-hemorrhage/ resuscitation-induced hepatic injury, J. Appl. Physiol., 2008, vol. 105, no. 4 pp. 1076–1082.CrossRef
    38.Kapil, V., Webb, A.J., and Ahluwalia, A., Inorganic nitrate and the cardiovascular system, Heart, 2010, vol. 96, pp. 1703–1709.CrossRef
    39.Knight, K., First study of nitric oxide metabolites in fish, J. Experimental Biol., 2010, vol. 213, DOI: 10.1242/jeb.052209.
    40.Kovacic, S., Petrinec, Z., Matasin, Z., et al., Increased permeability of the blood
    ain barrier following administration of glyceryl trinitrate in common carp (Cyprinus carpio L.), Coll. Antropol., 2008, vol. 32, no. Suppl 1, pp. 99–103.
    41.Lai, J.C.C., Kakut, A.I., Mok, H.O.L., et al., Effects of moderate and substantial hypoxia on erythropoietin levels in rainbow trout kidney and spleen, J. Experimental Biol., 2006, vol. 209, pp. 2734–2738.CrossRef
    42.Lundberg, J.O. and Weitzberg, E., NO generation from nitrite and its role in vascular control, Arteriosclerosis Thrombosis and Vascular Biol., 2005, vol. 25, pp. 915–922.CrossRef
    43.Matey, V., Richards, J.G., Wang, Y., et al., The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii, J. Experimental Biol., 2008, vol. 211, pp. 1063–1074.CrossRef
    44.Maher, A.R., Milsom, A.B., Gunaruwan, P., et al., Hypoxic modulation of exogenous nitrite-induced vasodilation in humans, Circulation, 2008, vol. 117, pp. 670–677.CrossRef
    45.Mandic, M., Todgham, A.E., and Richards, J.G., Mechanisms and evolution of hypoxia tolerance in fish, Proc. R. Soc. B., 2009, vol. 276, no. 1657 pp. 735–744.CrossRef
    46.Mcneill, B. and Perry, S.F., The interactive effects of hypoxia and nitric oxide on catecholamine secretion in rainbow trout (Oncorhynchus mykiss), J. Experimental Biol., 2006, vol. 209, pp. 4214–4223.CrossRef
    47.Mitrovic, D., Dymowska, A., Nilsson, G.E., and Perry, S.F., Physiological consequences of gill remodeling in goldfish (Carassius auratus) during exposure to long-term hypoxia, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, vol. 297, no. 1, pp. R224–R234.CrossRef
    48.Nikinmaa, M. and Rees, B.B., Oxygen-dependent gene expression in fishes, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2005, vol. 288, no. 5, pp. R1079–R1090.CrossRef
    49.Nilsson, G.E., Gill remodeling in fish—a new fashion or an ancient secret?, J. Experimental Biol., 2007, vol. 210, pp. 2403–2409.CrossRef
    50.Nilsson, G.E. and Renshaw, G.M.C., Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark, J. Experimental Biol., 2004, vol. 207, pp. 3131–3139.CrossRef
    51.Nowosad, J., Zarski, D., Bilas, M., et al., Dynamics of ammonia excretion in juvenile commom tench, Tinca tinca (L.), during intensive rearing under controlled conditions, Aquaculture Int., 2012, DOI: 10.1007/s10499-0129596-3.
    52.Ormerod, J.O.M., Ashrafian, H., Maher, A.R., et al., The role of vascular myoglobin in nitrite-mediated blood vessel relaxation, Cardiovasc. Res., 2011, vol. 89, no. 3 pp. 560–565.CrossRef
    53.Ostroumova, I.N., Biol. Basis of Feeding Fishes, St. Petersburg: GosNIORKh, 2001 [in Russian].
    54.Padmini, E., Vijaya Geetha, B., and Usha Rani, M., Pollution induced nitrative stress and heat shock protein 70 overexpression in fish liver mitochondria, Sci. Total. Environ., 2009, vol. 407, no. 4 pp. 1307–1317.CrossRef
    55.Paffett-Lugassy, N., Hsia, N., Fraenkel, P.G., et al., Functional conservation of erythropoietin signaling in zebrafish, Blood, 2007, vol. 110, no. 7 pp. 2718–2726.CrossRef
    56.Pattillo, Ch.B., Bir, Sh., Rajaram, V., and Kevil, Ch.G., Inorganic nitrite and chronic tissue ischaemia: a novel therapeutic modality for peripheral vascular diseases, Cardiovasc. Res., 2011, vol. 89, no. 3 pp. 533–541.CrossRef
    57.Pedersen, C.L., Faggiano, S., Helbo, S., et al., Roles of nitric oxide, nitrite and myoglobin on myocardial efficiency in trout (Oncorhynchus mykiss) and goldfish (Carassius auratus): implications for hypoxia tolerance, J. Experimental Biol., 2010, vol. 213, pp. 2755–2762.CrossRef
    58.Porteus, C., Hedrick, M.S., Hicks, J.W., et al., Time domains of the hypoxic ventilatory response in ectothermic vertebrates, J. Comp. Physiol. B, 2011, vol. 181, no. 3 pp. 311–333.CrossRef
    59.Resende, A.D., Rocha, E., and Lobo–Da–Cunha, A., Activity of purine catabolism enzymes during the reproductive cycle of male and female brown trout (Salmo trutta), Ann. N.Y. Acad. Sci., 2005, vol. 1040, pp. 444–447.CrossRef
    60.Reutov, V.P., Sorokina, E.G., and Kaiushin, L.P., The nitric oxide cycle in mammals and nitrite reducing activity of heme-containing proteins, Vopr. Med. Khim. Mosc., 1994, vol. 40, no. 6 pp. 31–35.
    61.Reutov, V.P., Sorokina, E.G., Okhotin, B.E., and Kositsyn, N.S., Cyclic Conversion of Nitric Oxide in Mammals, Moscow: Nauka, 1998 [in Russian].
    62.Richards, J.G., Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia, J. Experimental Biol., 2011, vol. 214, pp. 191–199.CrossRef
    63.Rombough, P. and Drader, H., Hemoglobin enhances oxygen uptake in larval zebrafish (Danio rerio) but only under conditions of extreme hypoxia, J. Experimental Biol., 2009, vol. 212, pp. 778–784.CrossRef
    64.Shimura, R., Ijiri, K., Mizuno, R., and Nagaoka, S., Aquatic animal research in space station and its issuesfocus on support technology on nitrate toxicity, Adv. Space Res., 2002, vol. 30, no. 4 pp. 803–808.CrossRef
    65.Sollid, J., De Angelis, P., Gundersen, K., and Nilsson, G.E., Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills, The Journal of Experimental Biol., 2003, vol. 206, pp. 3667–3673.CrossRef
    66.Sollid, J., Kjernsli, A., De Angelis, P.M., et al., Cell proliferation and gill morphology in anoxic crucian carp, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2005, vol. 289, no. 4, pp. R1196–R1201.CrossRef
    67.Sundin, L., Burleson, M.L., Sanchez. A.P., et al., Respiratory chemoreceptor function in vertebrates-comparative and evolutionary aspects, Integrative and Comparative Biol., 2007, vol. 47, no. 4 pp. 592–600.CrossRef
    68.Tamanini, C., Basini, G., Grasselli, F., and Tirelli, M., Nitric oxide and the ovary, J. Anim. Sci., 2003, vol. 81, pp. E1–E7.
    69.Tipsmark, Ch.K. and Madsen, S.S., Regulation of Na+/K+-ATPase activity by nitric oxide in the kidney and gill of the brown trout (Salmo trutta), J. Experimental Biol., 2003, vol. 206, pp. 1503–1510.CrossRef
    70.Tota, B., Quintieri, A.M., and Angelone, T., The emerging role of nitrite as an endogenous modulator and therapeutic agent of cardiovascular function, Curr. Med. Chem., 2010, vol. 17(18), pp. 1915–1925.CrossRef
    71.Tripathi, V. and Krishna, A., Changes in nitric oxide (NO) synthase isoforms and NOin the ovary of Heteropneustes fossilis (Bloch) during the reproductive cycle, J. Endocrinol., 2008, vol. 199, pp. 307–316.CrossRef
    72.Van Faassen, E.E., Bahrami, S., Feelisch, M., et al., Nitrite as regulator of hypoxic signaling in mammalian physiology, Med. Res. Rev., 2009, vol. 29, no. 5 pp. 683–741.CrossRef
    73.Vatsos, I.N., Kotzamanis, Y., Henry, M., et al., Monitoring stress in fish by applying image analysis to their skin mucous cells, Eur. J. Histochem., 2010, vol. 54, no. 2, p. e22, DOI: 10.4081/ejh.2010e22.CrossRef
    74.Webb, A.J., Milsom, A.B., Rathod, K.S., et al., Mechanisms underlying erythrocyte and endothelial nitrite reduction to nitric oxide in hypoxia role for xanthine oxidoreductase and endothelial nitric oxide synthase, Circulation Research, 2008, vol. 103, pp. 957–964.CrossRef
    75.Weitzberg, E., Hezel, M., and Lundberg, J.O., Nitratenitrite-nitric oxide pathway: implications for anesthesiology and intensive care, Anesthesiol., 2010, vol. 113, no. 6 pp. 1460–1475.CrossRef
    76.Weldon, M.B. and Hornbuckle, K.C., Concentrated animal feeding operations, row crops and their relationship to nitrate in eastern Iowa rivers, Environ. Sci. Technol., 2006, vol. 40, no. 10 pp. 3168–3173.
    77.Williams, D.A., Flood, M.H., Lewis, D.A., et al., Plasma levels of nitrite and nitrate in early and recent classes of fish, Comparative Medicine, 2008, vol. 58, no. 5 pp. 431–439.
    78.Zaouali, M.A., Ben Mosbah, I., Boncompagni, E., et al., Hypoxia inducible factor-1α accumulation in steatotic liver preservation: Role of nitric oxide, World J. Gastroenterol., 2010, vol. 16, no. 28 pp. 3499–3509.CrossRef
  • 作者单位:Sergey Dolomatov (1)
    Walery Zukow (2)
    Maciej Dzierzanowski (3)
    Jan Mieszkowski (2)
    Radoslaw Muszkieta (2)
    Mariusz Klimczyk (2)

    1. SI Georgievski Crimea State Medical University, Russian Federation, Moscow, Russia
    2. Kazimierz Wielki University, Bydgoszcz, Poland
    3. Collegium Medicum, Torun, Nicolaus Copernicus University, Bydgoszcz, Poland
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Hydrogeology
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-344X
文摘
The paper reviews scientific and practical aspects of research on the metabolism of nitrates into nitrate (nitrite) reductase in the nitric oxide cycle in fish under hypoxic conditions. Literature data are given about enzymes involved in nitrate reductase reactions and how oxygen shortage affects their activity. The environmental factors that may participate in the processes of nitrate reduction to nitrites as well as the ones which may influence the kinetics of nitrate in fishes are considered. Examined results indicate that certain components of the conservative L-arginine-dependent nitric oxide cycle pass in a number of vertebrate animals. Then, the contour cycle of nitric oxide in the fish shows a wide range of diversity which is represented by phylogenetically ancient biochemical mechanisms of nitrite (nitrate) reductase. First of all, the presence or absence of hemoglobin is distinguished. Secondly, a wider range of expression of different myoglobin isoforms appears. Furthermore, the kinetics of nitrates in fish is distinctly dependent on abiotic environmental factors. The analysis of the literature confirms the thesis that nitrates are an important substrate for the nitrate (nitrite) reductase loop cycle of nitric oxide in fishes. Secondly, their role in the compensation of arginineindependent NO synthesis increases with decreasing oxygen levels in the environment. Thirdly, the provided research results are a basis for indicating xanthine oxidase and possibly the microflora of the digestive system as the basic units of the nitrate reductase system in the body of fish. The practical aspect of the question, in our opinion, is the most meaningful presence of numerous studies that emphasize the need to find physiological reactions that precede the formation of pathological changes induced by the influence of combined effects of nitrates and hypoxia on the organism of fish. Keywords fish nitrates nitrites hypoxia nitric oxide cycle

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700