E6AP in the Brain: One Protein, Dual Function, Multiple Diseases
详细信息    查看全文
  • 作者:Jimmy El Hokayem (1)
    Zafar Nawaz (1) (2)
  • 关键词:E6AP ; UBE3A ; Nuclear hormone receptors ; Ubiquitin ligase ; Transcriptional coactivator ; Brain ; Angelman syndrome ; Autism ; Aging
  • 刊名:Molecular Neurobiology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:49
  • 期:2
  • 页码:827-839
  • 全文大小:652 KB
  • 参考文献:1. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75(3):495鈥?05
    2. Glickman MH, Ciechanover A (2002) The ubiquitin鈥損roteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82(2):373鈥?28
    3. Nawaz Z, O'Malley BW (2004) Urban renewal in the nucleus: is protein turnover by proteasomes absolutely required for nuclear receptor-regulated transcription? Mol Endocrinol 18(3):493鈥?99
    4. Etlinger JD, Goldberg AL (1977) A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc Natl Acad Sci U S A 74(1):54鈥?8
    5. Ciehanover A, Hod Y, Hershko A (1978) A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochem Biophys Res Commun 81(4):1100鈥?105
    6. Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin鈥損rotein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258(13):8206鈥?214
    7. Fang S, Weissman AM (2004) A field guide to ubiquitylation. Cell Mol Life Sci 61(13):1546鈥?561
    8. Powell SR (2006) The ubiquitin-proteasome system in cardiac physiology and pathology. Am J Physiol Heart Circ Physiol 291(1):H1鈥揌19
    9. Meiners S, Ludwig A, Stangl V, Stangl K (2008) Proteasome inhibitors: poisons and remedies. Med Res Rev 28(2):309鈥?27
    10. Tomaic V, Pim D, Banks L (2009) The stability of the human papillomavirus E6 oncoprotein is E6AP dependent. Virology 393(1):7鈥?0
    11. Yamamoto Y, Huibregtse JM, Howley PM (1997) The human E6-AP gene (UBE3A) encodes three potential protein isoforms generated by differential splicing. Genomics 41(2):263鈥?66
    12. Kishino T, Wagstaff J (1998) Genomic organization of the UBE3A/E6-AP gene and related pseudogenes. Genomics 47(1):101鈥?07
    13. Huibregtse JM, Scheffner M, Howley PM (1993) Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol Cell Biol 13(8):4918鈥?927
    14. Nawaz Z, Lonard DM, Smith CL, Lev-Lehman E, Tsai SY, Tsai MJ, O'Malley BW (1999) The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol 19(2):1182鈥?189
    15. Huibregtse JM, Scheffner M, Beaudenon S, Howley PM (1995) A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc Natl Acad Sci U S A 92(11):2563鈥?567
    16. Scheffner M, Huibregtse JM, Howley PM (1994) Identification of a human ubiquitin-conjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53. Proc Natl Acad Sci U S A 91(19):8797鈥?801
    17. Kumar S, Kao WH, Howley PM (1997) Physical interaction between specific E2 and Hect E3 enzymes determines functional cooperativity. J Biol Chem 272(21):13548鈥?3554
    18. Huang L, Kinnucan E, Wang G, Beaudenon S, Howley PM, Huibregtse JM, Pavletich NP (1999) Structure of an E6AP鈥揢bcH7 complex: insights into ubiquitination by the E2鈥揈3 enzyme cascade. Science 286(5443):1321鈥?326
    19. Zanier K, Charbonnier S, Baltzinger M, Nomine Y, Altschuh D, Trave G (2005) Kinetic analysis of the interactions of human papillomavirus E6 oncoproteins with the ubiquitin ligase E6AP using surface plasmon resonance. J Mol Biol 349(2):401鈥?12
    20. Kishino T, Lalande M, Wagstaff J (1997) UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 15(1):70鈥?3
    21. Talis AL, Huibregtse JM, Howley PM (1998) The role of E6AP in the regulation of p53 protein levels in human papillomavirus (HPV)-positive and HPV-negative cells. J Biol Chem 273(11):6439鈥?445
    22. Cooper B, Schneider S, Bohl J, Jiang Y, Beaudet A, Vande Pol S (2003) Requirement of E6AP and the features of human papillomavirus E6 necessary to support degradation of p53. Virology 306(1):87鈥?9
    23. Dhananjayan SC, Ramamoorthy S, Khan OY, Ismail A, Sun J, Slingerland J, O'Malley BW, Nawaz Z (2006) WW domain binding protein-2, an E6-associated protein interacting protein, acts as a coactivator of estrogen and progesterone receptors. Mol Endocrinol 20(10):2343鈥?354
    24. Khan OY, Fu G, Ismail A, Srinivasan S, Cao X, Tu Y, Lu S, Nawaz Z (2006) Multifunction steroid receptor coactivator, E6-associated protein, is involved in development of the prostate gland. Mol Endocrinol 20(3):544鈥?59
    25. Salvat C, Wang G, Dastur A, Lyon N, Huibregtse JM (2004) The 鈭? phenylalanine is required for substrate ubiquitination catalyzed by HECT ubiquitin ligases. J Biol Chem 279(18):18935鈥?8943
    26. Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S (2003) Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112(6):779鈥?91
    27. Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W (2003) Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302(5652):1972鈥?975
    28. Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, O'Rourke K, Koeppen H, Dixit VM (2004) The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429(6987):86鈥?2
    29. Oda H, Kumar S, Howley PM (1999) Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. Proc Natl Acad Sci U S A 96(17):9557鈥?562
    30. Liu X, Yuan H, Fu B, Disbrow GL, Apolinario T, Tomaic V, Kelley ML, Baker CC, Huibregtse J, Schlegel R (2005) The E6AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. J Biol Chem 280(11):10807鈥?0816
    31. Liu X, Disbrow GL, Yuan H, Tomaic V, Schlegel R (2007) Myc and human papillomavirus type 16 E7 genes cooperate to immortalize human keratinocytes. J Virol 81(22):12689鈥?2695
    32. Kumar S, Talis AL, Howley PM (1999) Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination. J Biol Chem 274(26):18785鈥?8792
    33. Nuber U, Schwarz SE, Scheffner M (1998) The ubiquitin-protein ligase E6-associated protein (E6-AP) serves as its own substrate. Eur J Biochem 254(3):643鈥?49
    34. Kao WH, Beaudenon SL, Talis AL, Huibregtse JM, Howley PM (2000) Human papillomavirus type 16 E6 induces self-ubiquitination of the E6AP ubiquitin-protein ligase. J Virol 74(14):6408鈥?417
    35. Reid G, Hubner MR, Metivier R, Brand H, Denger S, Manu D, Beaudouin J, Ellenberg J, Gannon F (2003) Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 11(3):695鈥?07
    36. James MA, Lee JH, Klingelhutz AJ (2006) HPV16-E6 associated hTERT promoter acetylation is E6AP dependent, increased in later passage cells and enhanced by loss of p300. Int J Cancer 119(8):1878鈥?885
    37. Catoe HW, Nawaz Z (2011) E6-AP facilitates efficient transcription at estrogen responsive promoters through recruitment of chromatin modifiers. Steroids 76(9):897鈥?02
    38. Ismail A, Nawaz Z (2005) Nuclear hormone receptor degradation and gene transcription: an update. IUBMB Life 57(7):483鈥?90
    39. Alarid ET (2006) Lives and times of nuclear receptors. Mol Endocrinol 20(9):1972鈥?981
    40. Nawaz Z, Lonard DM, Dennis AP, Smith CL, O'Malley BW (1999) Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci U S A 96(5):1858鈥?862
    41. Lonard DM, Nawaz Z, Smith CL, O'Malley BW (2000) The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell 5(6):939鈥?48
    42. Gao X, Mohsin SK, Gatalica Z, Fu G, Sharma P, Nawaz Z (2005) Decreased expression of E6-associated protein in breast and prostate carcinomas. Endocrinology 146(4):1707鈥?712
    43. Mani A, Oh AS, Bowden ET, Lahusen T, Lorick KL, Weissman AM, Schlegel R, Wellstein A, Riegel AT (2006) E6AP mediates regulated proteasomal degradation of the nuclear receptor coactivator amplified in breast cancer 1 in immortalized cells. Cancer Res 66(17):8680鈥?686
    44. Rochette-Egly C (2005) Dynamic combinatorial networks in nuclear receptor-mediated transcription. J Biol Chem 280(38):32565鈥?2568
    45. Albrecht U, Sutcliffe JS, Cattanach BM, Beechey CV, Armstrong D, Eichele G, Beaudet AL (1997) Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat Genet 17(1):75鈥?8
    46. Meng L, Person RE, Beaudet AL (2012) Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a. Hum Mol Genet 21(13):3001鈥?012
    47. Daily J, Smith AG, Weeber EJ (2012) Spatial and temporal silencing of the human maternal UBE3A gene. Eur J Paediatr Neurol 16(6):587鈥?91
    48. Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, Beaudet AL (1998) Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21(4):799鈥?11
    49. Mishra A, Jana NR (2008) Regulation of turnover of tumor suppressor p53 and cell growth by E6-AP, a ubiquitin protein ligase mutated in Angelman mental retardation syndrome. Cell Mol Life Sci 65(4):656鈥?66
    50. Mishra A, Godavarthi SK, Jana NR (2009) UBE3A/E6-AP regulates cell proliferation by promoting proteasomal degradation of p27. Neurobiol Dis 36(1):26鈥?4
    51. Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM, Flavell SW, Kim TK, Griffith EC, Waldon Z, Maehr R, Ploegh HL, Chowdhury S, Worley PF, Steen J, Greenberg ME (2010) The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140(5):704鈥?16
    52. Margolis SS, Salogiannis J, Lipton DM, Mandel-Brehm C, Wills ZP, Mardinly AR, Hu L, Greer PL, Bikoff JB, Ho HY, Soskis MJ, Sahin M, Greenberg ME (2010) EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell 143(3):442鈥?55
    53. Reiter LT, Seagroves TN, Bowers M, Bier E (2006) Expression of the Rho-GEF Pbl/ECT2 is regulated by the UBE3A E3 ubiquitin ligase. Hum Mol Genet 15(18):2825鈥?835
    54. Mishra A, Dikshit P, Purkayastha S, Sharma J, Nukina N, Jana NR (2008) E6-AP promotes misfolded polyglutamine proteins for proteasomal degradation and suppresses polyglutamine protein aggregation and toxicity. J Biol Chem 283(12):7648鈥?656
    55. Mulherkar SA, Sharma J, Jana NR (2009) The ubiquitin ligase E6-AP promotes degradation of alpha-synuclein. J Neurochem 110(6):1955鈥?964
    56. Mishra A, Godavarthi SK, Maheshwari M, Goswami A, Jana NR (2009) The ubiquitin ligase E6-AP is induced and recruited to aggresomes in response to proteasome inhibition and may be involved in the ubiquitination of Hsp70-bound misfolded proteins. J Biol Chem 284(16):10537鈥?0545
    57. Takiyama Y (2007) Sacsinopathies: sacsin-related ataxia. Cerebellum 6(4):353鈥?59
    58. Smith CL, DeVera DG, Lamb DJ, Nawaz Z, Jiang YH, Beaudet AL, O'Malley BW (2002) Genetic ablation of the steroid receptor coactivator-ubiquitin ligase, E6-AP, results in tissue-selective steroid hormone resistance and defects in reproduction. Mol Cell Biol 22(2):525鈥?35
    59. Nishihara E, O'Malley BW, Xu JM (2004) Nuclear receptor coregulators are new players in nervous system development and function. Mol Neurobiol 30(3):307鈥?25
    60. Ferdousy F, Bodeen W, Summers K, Doherty O, Wright O, Elsisi N, Hilliard G, O'Donnell JM, Reiter LT (2011) Drosophila Ube3a regulates monoamine synthesis by increasing GTP cyclohydrolase I activity via a non-ubiquitin ligase mechanism. Neurobiol Dis 41(3):669鈥?77
    61. Godavarthi SK, Dey P, Maheshwari M, Jana NR (2012) Defective glucocorticoid hormone receptor signaling leads to increased stress and anxiety in a mouse model of Angelman syndrome. Hum Mol Genet 21(8):1824鈥?834
    62. Low D, Chen KS (2010) Genome-wide gene expression profiling of the Angelman syndrome mice with Ube3a mutation. Eur J Hum Genet 18(11):1228鈥?235
    63. Wu Y, Bolduc FV, Bell K, Tully T, Fang Y, Sehgal A, Fischer JA (2008) A Drosophila model for Angelman syndrome. Proc Natl Acad Sci U S A 105(34):12399鈥?2404
    64. Lu Y, Wang F, Li Y, Ferris J, Lee JA, Gao FB (2009) The Drosophila homologue of the Angelman syndrome ubiquitin ligase regulates the formation of terminal dendritic branches. Hum Mol Genet 18(3):454鈥?62
    65. Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet AL (2008) The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum Mol Genet 17(1):111鈥?18
    66. Yashiro K, Riday TT, Condon KH, Roberts AC, Bernardo DR, Prakash R, Weinberg RJ, Ehlers MD, Philpot BD (2009) Ube3a is required for experience-dependent maturation of the neocortex. Nat Neurosci 12(6):777鈥?83
    67. Jiang YH, Pan Y, Zhu L, Landa L, Yoo J, Spencer C, Lorenzo I, Brilliant M, Noebels J, Beaudet AL (2010) Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3. PLoS One 5(8):e12278
    68. Condon KH, Ho J, Robinson CG, Hanus C, Ehlers MD (2013) The Angelman syndrome protein Ube3a/E6AP is required for Golgi acidification and surface protein sialylation. J Neurosci 33(9):3799鈥?814
    69. Gustin RM, Bichell TJ, Bubser M, Daily J, Filonova I, Mrelashvili D, Deutch AY, Colbran RJ, Weeber EJ, Haas KF (2010) Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome. Neurobiol Dis 39(3):283鈥?91
    70. Heck DH, Zhao Y, Roy S, LeDoux MS, Reiter LT (2008) Analysis of cerebellar function in Ube3a-deficient mice reveals novel genotype-specific behaviors. Hum Mol Genet 17(14):2181鈥?189
    71. Lossie AC, Whitney MM, Amidon D, Dong HJ, Chen P, Theriaque D, Hutson A, Nicholls RD, Zori RT, Williams CA, Driscoll DJ (2001) Distinct phenotypes distinguish the molecular classes of Angelman syndrome. J Med Genet 38(12):834鈥?45
    72. Varela MC, Kok F, Otto PA, Koiffmann CP (2004) Phenotypic variability in Angelman syndrome: comparison among different deletion classes and between deletion and UPD subjects. Eur J Hum Genet 12(12):987鈥?92
    73. Dan B, Cheron G (2004) Postural rhythmic muscle bursting activity in Angelman syndrome. Brain Dev 26(6):389鈥?93
    74. Cheron G, Servais L, Dan B, Gall D, Roussel C, Schiffmann SN (2005) Fast oscillation in the cerebellar cortex of calcium binding protein-deficient mice: a new sensorimotor arrest rhythm. Prog Brain Res 148:165鈥?80
    75. Mulherkar SA, Jana NR (2010) Loss of dopaminergic neurons and resulting behavioural deficits in mouse model of Angelman syndrome. Neurobiol Dis 40(3):586鈥?92
    76. Harbord M (2001) Levodopa responsive Parkinsonism in adults with Angelman syndrome. J Clin Neurosci 8(5):421鈥?22
    77. Sato M, Stryker MP (2010) Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a. Proc Natl Acad Sci U S A 107(12):5611鈥?616
    78. Dorrn AL, Yuan K, Barker AJ, Schreiner CE, Froemke RC (2010) Developmental sensory experience balances cortical excitation and inhibition. Nature 465(7300):932鈥?36
    79. Weeber EJ, Jiang YH, Elgersma Y, Varga AW, Carrasquillo Y, Brown SE, Christian JM, Mirnikjoo B, Silva A, Beaudet AL, Sweatt JD (2003) Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J Neurosci 23(7):2634鈥?644
    80. van Woerden GM, Harris KD, Hojjati MR, Gustin RM, Qiu S, de Avila Freire R, Jiang YH, Elgersma Y, Weeber EJ (2007) Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of alphaCaMKII inhibitory phosphorylation. Nat Neurosci 10(3):280鈥?82
    81. Jay V, Becker LE, Chan FW, Perry TL Sr (1991) Puppet-like syndrome of Angelman: a pathologic and neurochemical study. Neurology 41(3):416鈥?22
    82. Cao C, Rioult-Pedotti MS, Migani P, Yu CJ, Tiwari R, Parang K, Spaller MR, Goebel DJ, Marshall J (2013) Impairment of TrkB-PSD-95 signaling in Angelman syndrome. PLoS Biol 11(2):e1001478
    83. Engert JC, Berube P, Mercier J, Dore C, Lepage P, Ge B, Bouchard JP, Mathieu J, Melancon SB, Schalling M, Lander ES, Morgan K, Hudson TJ, Richter A (2000) ARSACS, a spastic ataxia common in northeastern Quebec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat Genet 24(2):120鈥?25
    84. Parfitt DA, Michael GJ, Vermeulen EG, Prodromou NV, Webb TR, Gallo JM, Cheetham ME, Nicoll WS, Blatch GL, Chapple JP (2009) The ataxia protein sacsin is a functional co-chaperone that protects against polyglutamine-expanded ataxin-1. Hum Mol Genet 18(9):1556鈥?565
    85. Ramamoorthy S, Nawaz Z (2008) E6-associated protein (E6-AP) is a dual function coactivator of steroid hormone receptors. Nucl Recept Signal 6:e006
    86. Miura K, Kishino T, Li E, Webber H, Dikkes P, Holmes GL, Wagstaff J (2002) Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice. Neurobiol Dis 9(2):149鈥?59
    87. Clayton-Smith J, Laan L (2003) Angelman syndrome: a review of the clinical and genetic aspects. J Med Genet 40(2):87鈥?5
    88. Pelc K, Cheron G, Boyd SG, Dan B (2008) Are there distinctive sleep problems in Angelman syndrome? Sleep Med 9(4):434鈥?41
    89. Yamasaki K, Joh K, Ohta T, Masuzaki H, Ishimaru T, Mukai T, Niikawa N, Ogawa M, Wagstaff J, Kishino T (2003) Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Hum Mol Genet 12(8):837鈥?47
    90. Mardirossian S, Rampon C, Salvert D, Fort P, Sarda N (2009) Impaired hippocampal plasticity and altered neurogenesis in adult Ube3a maternal deficient mouse model for Angelman syndrome. Exp Neurol 220(2):341鈥?48
    91. Smith SE, Zhou YD, Zhang G, Jin Z, Stoppel DC, Anderson MP (2011) Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci Transl Med 3(103):103ra97
    92. Williams CA (2005) Neurological aspects of the Angelman syndrome. Brain Dev 27(2):88鈥?4
    93. Lalande M, Calciano MA (2007) Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci 64(7鈥?):947鈥?60
    94. Matsuura T, Sutcliffe JS, Fang P, Galjaard RJ, Jiang YH, Benton CS, Rommens JM, Beaudet AL (1997) De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet 15(1):74鈥?7
    95. Sutcliffe JS, Jiang YH, Galijaard RJ, Matsuura T, Fang P, Kubota T, Christian SL, Bressler J, Cattanach B, Ledbetter DH, Beaudet AL (1997) The E6-Ap ubiquitin-protein ligase (UBE3A) gene is localized within a narrowed Angelman syndrome critical region. Genome Res 7(4):368鈥?77
    96. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23(2):185鈥?88
    97. Matijevic T, Knezevic J, Slavica M, Pavelic J (2009) Rett syndrome: from the gene to the disease. Eur Neurol 61(1):3鈥?0
    98. Samaco RC, Hogart A, LaSalle JM (2005) Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum Mol Genet 14(4):483鈥?92
    99. Moretti P, Zoghbi HY (2006) MeCP2 dysfunction in Rett syndrome and related disorders. Curr Opin Genet Dev 16(3):276鈥?81
    100. Makedonski K, Abuhatzira L, Kaufman Y, Razin A, Shemer R (2005) MeCP2 deficiency in Rett syndrome causes epigenetic aberrations at the PWS/AS imprinting center that affects UBE3A expression. Hum Mol Genet 14(8):1049鈥?058
    101. Jordan C, Francke U (2006) Ube3a expression is not altered in Mecp2 mutant mice. Hum Mol Genet 15(14):2210鈥?215
    102. Jiang Y, Tsai TF, Bressler J, Beaudet AL (1998) Imprinting in Angelman and Prader鈥揥illi syndromes. Curr Opin Genet Dev 8(3):334鈥?42
    103. Mann MR, Bartolomei MS (1999) Towards a molecular understanding of Prader鈥揥illi and Angelman syndromes. Hum Mol Genet 8(10):1867鈥?873
    104. Peters SU, Beaudet AL, Madduri N, Bacino CA (2004) Autism in Angelman syndrome: implications for autism research. Clin Genet 66(6):530鈥?36
    105. Veltman MW, Craig EE, Bolton PF (2005) Autism spectrum disorders in Prader鈥揥illi and Angelman syndromes: a systematic review. Psychiatr Genet 15(4):243鈥?54
    106. Hughes JR (2009) Update on autism: a review of 1300 reports published in 2008. Epilepsy Behav 16(4):569鈥?89
    107. O'Hare A (2009) Autism spectrum disorder: diagnosis and management. Arch Dis Child Educ Pract Ed 94(6):161鈥?68
    108. Verhoeven JS, De Cock P, Lagae L, Sunaert S (2010) Neuroimaging of autism. Neuroradiology 52(1):3鈥?4
    109. Cook EH Jr, Lindgren V, Leventhal BL, Courchesne R, Lincoln A, Shulman C, Lord C, Courchesne E (1997) Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 60(4):928鈥?34
    110. Sutcliffe JS, Nurmi EL, Lombroso PJ (2003) Genetics of childhood disorders: XLVII. Autism: Part 6. Duplication and inherited susceptibility of chromosome 15q11鈥搎13 genes in autism. J Am Acad Child Adolesc Psychiatry 42(2):253鈥?56
    111. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, Zhang H, Estes A, Brune CW, Bradfield JP, Imielinski M, Frackelton EC, Reichert J, Crawford EL, Munson J, Sleiman PM, Chiavacci R, Annaiah K, Thomas K, Hou C, Glaberson W, Flory J, Otieno F, Garris M, Soorya L, Klei L, Piven J, Meyer KJ, Anagnostou E, Sakurai T, Game RM, Rudd DS, Zurawiecki D, McDougle CJ, Davis LK, Miller J, Posey DJ, Michaels S, Kolevzon A, Silverman JM, Bernier R, Levy SE, Schultz RT, Dawson G, Owley T, McMahon WM, Wassink TH, Sweeney JA, Nurnberger JI, Coon H, Sutcliffe JS, Minshew NJ, Grant SF, Bucan M, Cook EH, Buxbaum JD, Devlin B, Schellenberg GD, Hakonarson H (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459(7246):569鈥?73
    112. Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ (2001) Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson's disease. Science 293(5528):263鈥?69
    113. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K (2003) alpha-Synuclein locus triplication causes Parkinson's disease. Science 302(5646):841
    114. The Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72(6):971鈥?83
    115. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575鈥?21
    116. Landles C, Bates GP (2004) Huntingtin and the molecular pathogenesis of Huntington's disease. Fourth in molecular medicine review series. EMBO Rep 5(10):958鈥?63
    117. Maheshwari M, Samanta A, Godavarthi SK, Mukherjee R, Jana NR (2012) Dysfunction of the ubiquitin ligase Ube3a may be associated with synaptic pathophysiology in a mouse model of Huntington disease. J Biol Chem 287(35):29949鈥?9957
  • 作者单位:Jimmy El Hokayem (1)
    Zafar Nawaz (1) (2)

    1. Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, 1501 N.W. 10th Avenue, Miami, FL, 33136, USA
    2. Braman Family Breast Cancer Institute/Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, BRB Building, Room 723 (C-227), 1501 NW 10th Avenue, Miami, FL, 33136, USA
  • ISSN:1559-1182
文摘
E6-Associated Protein (E6AP), the founding member of the HECT (Homologus to E6AP C terminus) family of ubiquitin ligases, has been gaining increased attention from the scientific community. In addition to its ubiquitin ligase function, our laboratory has also identified steroid hormone receptor transcriptional coactivation as yet another essential function of this protein. Furthermore, it has been established that E6AP has a role in numerous diseases including cancers and neurological syndromes. In this review, we delineate genetic and biochemical knowledge of E6AP and we focus on its role in the pathobiology of neuro-developmental and neuro-aging diseases; bringing to light important gaps of knowledge related to the involvement of its well-studied ligase function versus the much less studied nuclear receptor transcriptional coactivation function in the pathogenesis of these diseases. Tackling these gaps of knowledge could reveal novel possible neuro-pathobiological mechanisms and present crucial information for the design of effective treatment modalities for devastating CNS diseases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700