Differential evolution variants to schedule flexible assembly lines
详细信息    查看全文
  • 作者:Lui Wen Han Vincent (1)
    S. G. Ponnambalam (1)
    G. Kanagaraj (1)
  • 关键词:Scheduling ; Flexible assembly line ; Differential evolution
  • 刊名:Journal of Intelligent Manufacturing
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:25
  • 期:4
  • 页码:739-753
  • 全文大小:921 KB
  • 参考文献:1. Blazewicz, J.,& Kovalyov, M. (2002). The complexity of two group scheduling problems. / Journal of Scheduling, / 5, 477鈥?85. CrossRef
    2. Celano, G., Costa, A., Fischera, S.,& Perrone, G. (2000). Fuzzy scheduling of a flexible assembly line through an evolutionary algorithm. / IEEE International Conference on Systems, Manufacturing, and Cybernetics, / 1, 328鈥?33.
    3. Chan, F., Chan, H.,& Lau, H. (2002). The state of the art in simulation study on FMS scheduling: A comprehensive survey. / The International Journal, Advanced Manufacturing Technology, / 19, 830鈥?49. CrossRef
    4. Das, S., Abraham, A., Chakraborty, U. K.,& Konar, A. (2009). Differential evolution using a neighourhood-based mutation operator. / IEEE Transactions on Evolutionary Computation, / 13, 526鈥?53. CrossRef
    5. Das, S., Chakraborty, U.K.,& Konar, A. (2005). Two improved differential evoluion schemes for faster global search. In / Genetic and Evolutionary Computation Conference, pp. 991鈥?98.
    6. Das, S.,& Suganthan, P. (2011). Differential evolution: A survey of the state-of-the-art. / IEEE Transactions of Evolutionary Computation, / 15, 4鈥?1. CrossRef
    7. Donath, M.,& Graves, R. (1988). Flexible assembly systems: An approach for near real-time scheduling and routeing of multiple products. / International Journal of Production Research, / 26, 1903鈥?919. CrossRef
    8. Donath, M., Graves, R.,& Carlson, D. (1989). Flexible assembly systems: The scheduling problem for multiple products. / Journal of Manufacturing Systems, / 8, 27鈥?4. CrossRef
    9. Etiler, O., Toklu, B., Atak, M.,& Wilson, J. (2004). A genetic algorithm for flow shop scheduling problems. / Journal of the Operational Research Society, / 55(8), 830鈥?35. CrossRef
    10. Guo, Z., Wong, W., Leung, S.,& Fan, J. (2009). Intelligent production control decision support system for flexible assembly lines. / Expert Systems with Applications, / 36, 4268鈥?277. CrossRef
    11. Guo, Z., Wong, W., Leung, S.,& Fan, J. (2008a). A genetic algorithm-based optimization model for scheduling flexible assembly lines. / The International Journal, Advanced Manufacturing Technology, / 36, 156鈥?68. CrossRef
    12. Guo, Z., Wong, W., Leung, S., Fan, J.,& Chan, S. (2008b). A genetic algorithm-based optimization model for solving the flexible assembly line balancing problem with work sharing and workstation revisiting. / IEEE Transactions on Systems, Manufacturing and Cybernetics, / 38, 218鈥?28. CrossRef
    13. Jie, G., Mitsuo, G.,& Linyan, S. (2006). A hybrid of genetic algorithm and bottleneck shifting for flexible job shop scheduling problemA hybrid of genetic algorithm and bottleneck shifting for flexible job shop scheduling problem. / GECCO, / 2006, 1157鈥?164.
    14. Laarhoven, P., Aarts, E.,& Lenstra, J. K. (1990). Job shop scheduling by simulated annealing. / Journal of Operations Research, / 40, 113鈥?25. CrossRef
    15. Liao, C.-J., Tseng, C.-T.,& Luarn, P. (2005). A discrete version of particle swarm optimization for flowshop scheduling problems. / Computers& Operations Research, / 34(10), 3099鈥?111.
    16. Liaw, C.-C. (1999). A branch-and-bound algorithm for the single machine earliness and tardiness scheduling problem. / Computers& Operations Research, / 26, 679鈥?93. CrossRef
    17. Nearchou, A.,& Omirou, S. (2006). Differential evolution for sequencing and scheduling optimization. / Journal of Heuristics, / 12, 395鈥?11. CrossRef
    18. Pan, Q.-K., Tasgetiren, M. F., Suganthan, P.,& Chua, T. (2011). A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. / Information Sciences, / 181, 2455鈥?468. CrossRef
    19. Rajendran, C.,& Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/total flowtime of jobs. / European Journal of Operational Research, / 155, 426鈥?38. CrossRef
    20. Rao, R. V., Savsani, V. J.,& Vakharia, D. P. (2011). Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. / Computer-Aided Design, / 43, 303鈥?15.
    21. Rashedi, E., Nezamabadi-pour, H.,& Saryazdi, S. (2009). GSA: A gravitational search algorithm. / Journal of Information Sciences, / 179, 2232鈥?248. CrossRef
    22. Salehi, M. (2011). Optimization process planning using hybrid genetic algorithm and intelligent search for job shop machining. / Journal of Intelligent Manufacturing, / 22, 643鈥?52.
    23. Sawik, T. (2000). An LP-based approach for loading and routing in a flexible assembly line. / International Journal of Production Economics, / 64, 49鈥?8. CrossRef
    24. Shah-Hosseini, H. (2011). Principal components analysis by the galaxy-based search algorithm: A novel metaheuristic for continuous optimisation. / International Journal of Computational Science and Engineering, / 6, 132鈥?40. CrossRef
    25. Storn, R.,& Price, K. (1997). Differential evolution鈥攁 simple and efficient heuristic for global optimization over continuous spaces. / Journal of Global Optimization, / 11, 341鈥?59. CrossRef
    26. Vincent, L. W. H.,& Ponnambalam, S. G. (2011). Scheduling flexible assembly lines using differential evolution. / Swarm, Evolutionary, and Memetic Computing, Lecture Notes in Computer Science, / 7076(2011), 43鈥?0. CrossRef
    27. Vincent, L. W. H.,& Ponnambalam S.G. (2012). Scheduling flexible assembly lines using variants of differential evolution. In / Proceedings of IEEE International Conference on Automation Science and Engineering (CASE), pp. 590鈥?95.
  • 作者单位:Lui Wen Han Vincent (1)
    S. G. Ponnambalam (1)
    G. Kanagaraj (1)

    1. School of Engineering, Monash University, Sunway Campus, Bandar Sunway, 46150, Petaling Jaya, Selangor, Malaysia
  • ISSN:1572-8145
文摘
Scarce resources such as material, labor, and equipment are to be optimized to improve the performance and lower production costs in flexible assembly lines. These resources are usually allocated optimally through the generation of schedules. In this paper, variants of a differential evolution-based algorithm are employed to schedule flexible assembly lines (FAL). The performance of the assembly line is optimized based on two performance criteria, namely the weighted sum of Earliness/Tardiness penalties and the balance of the assembly line. Different variants of the Bi-level differential evolution (BiDE) algorithms are developed to study the effects of three FAL problems. The parameters of BiDE algorithm for FAL problems are fine-tuned. The performance of the BiDE algorithm is evaluated using the datasets and the Bi-level Genetic Algorithm (BiGA) available in the literature. The experimental results show that the proposed differential evolution-based algorithm outperforms BiGA in terms of mean best fitness.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700