Teleseismic inversion of the 2004 Sumatra-Andaman earthquake rupture process using complete Green’s functions
详细信息    查看全文
  • 作者:Masahiro Yoshimoto ; Yoshiko Yamanaka
  • 关键词:Finite fault inversion ; Teleseismic body waves ; 2004 Sumatra ; Andaman earthquake ; Direct solution method
  • 刊名:Earth, Planets and Space
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:66
  • 期:1
  • 全文大小:3812KB
  • 参考文献:Ammon CJ, Ji C, Thio H-K, Robinson D, Ni S, Hjorleifsdottir V, Kanamori H, Lay T, Das S, Helmberger D, Ichinose G, Polet J, Wald D (2005) Rupture process of the 2004 Sumatra-Andaman earthquake. Science 308(5725):1133-139, doi:10.1126/science.1112260CrossRef
    Andrade V, Rajendran K (2011) Intraplate response to the great 2004 Sumatra-Andaman earthquake: a study from the Andaman segment. Bull Seismol Soc Am 101(2):506-14, doi:10.1785/0120100155CrossRef
    Araki E, Shinohara M, Obana K, Yamada T, Kaneda Y, Kanazawa T, Suyehiro K (2006) Aftershock distribution of the 26 December 2004 Sumatra-Andaman earthquake from ocean bottom seismographic observation. Earth Planets Space 58(2):113-19CrossRef
    Asano K, Iwata T (2012) Source model for strong ground motion generation in the frequency range 0.1-0 Hz during the 2011 Tohoku earthquake. Earth Planets Space 64:1111-123, doi:10.5047/eps.2012.05.003CrossRef
    Das S, Aki K (1977) Fault plane with barriers-versatile earthquake model. J Geophys Res 82(36):5658-670, doi:10.1029/Jb082i036p05658CrossRef
    de Groot-Hedlin CD (2005) Estimation of the rupture length and velocity of the Great Sumatra earthquake of Dec 26, 2004 using hydroacoustic signals. Geophys Res Lett 32(11):L11303, doi:10.1029/2005GLO22695CrossRef
    Delescluse M, Chamot-Rooke N, Cattin R, Fleitout L, Trubienko O, Vigny C (2012) April 2012 intra-oceanic seismicity off Sumatra boosted by the Banda-Aceh megathrust. Nature 490(7419):240-44, doi:10.1038/Nature11520CrossRef
    Engdahl ER, Villasenor A, DeShon HR, Thurber CH (2007) Teleseismic relocation and assessment of seismicity (1918-2005) in the region of the 2004 M-w 9.0 Sumatra-Andaman and 2005 M-w 8.6 Nias Island great earthquakes. Bull Seismol Soc Am 97(1):S43–S61, doi:10.1785/0120050614CrossRef
    Fujii Y, Satake K (2007) Tsunami source of the 2004 Sumatra-Andaman earthquake inferred from tide gauge and satellite data. Bull Seismol Soc Am 97(1):S192–S207, doi:10.1785/0120050613CrossRef
    Geller RJ, Ohminato T (1994) Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary-conditions using the direct solution method. Geophys J Int 116(2):421-46, doi:10.1111/j.1365-246X.1994.tb01807.xCrossRef
    Gudmundsson O, Sambridge M (1998) A regionalized upper mantle (RUM) seismic model. J Geophys Res 103(B4):7121-136, doi:10.1029/97jb02488CrossRef
    Guilbert J, Vergoz J, Schissele E, Roueff A, Cansi Y (2005) Use of hydroacoustic and seismic arrays to observe rupture propagation and source extent of the Mw =9.0 Sumatra earthquake. Geophys Res Lett 32(15):L15310, doi:10.1029/2005GL022966CrossRef
    Hirata K, Satake K, Tanioka Y, Kuragano T, Hasegawa Y, Hayashi Y, Hamada N (2006) The 2004 Indian Ocean tsunami: tsunami source model from satellite altimetry. Earth Planets Space 58(2):195-01CrossRef
    Hoechner A, Babeyko AY, Sobolev SV (2008) Enhanced GPS inversion technique applied to the 2004 Sumatra earthquake and tsunami. Geophys Res Lett 35(8):L08310, doi:10.1029/2007gl033133CrossRef
    Houston H, Engdahl ER (1989) A comparison of the spatio-temporal distribution of moment release for the 1986 Andreanof Islands earthquake with relocated seismicity. Geophys Res Lett 16(12):1421-424, doi:10.1029/Gl016i012p01421CrossRef
    Ishii M, Shearer PM, Houston H, Vidale JE (2005) Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the hi-net array. Nature 435(7044):933-36, doi:10.1038/Nature03675
    Ji C (2005) Magnitude 9.1 off the west coast of northern Sumatra. Sunday, December 26, 2004 at 00:58:53 UTC. http://?neic.?usgs.?gov/?neis/?eq_?depot/-004/?eq_-41226/?neic_?slav_?ff.?html.-Accessed 2 Dec 2013
    Kanamori H (1993) W phase. Geophys Res Lett 20(16):1691-694, doi:10.1029/93gl01883CrossRef
    Kanamori H, Rivera L (2008) Source inversion of W phase: speeding up seismic tsunami warning. Geophys J Int 175(1):222-38, doi:10.1111/j.1365-246X.2008.03887.xCrossRef
    Kawai K, Takeuchi N, Geller RJ (2006) Complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media. Geophys J Int 164(2):411-24, doi:10.1111/j.1365-246X.2005.02829.xCrossRef
    Kennett BLN, Cummins PR (2005) The relationship of the seismic source and subduction zone structure for the 2004 December 26 - Sumatra-Andaman earthquake. Earth Planet Sci Lett 239(1-):1-, doi:10.1016/j.epsl.2005.08.015CrossRef
    Kennett BLN, Engdahl ER (1991) Traveltimes for global earthquake location and phase identification. Geophys J Int 105(2):429-65, doi:10.1111/j.1365-246X.1991.tb06724.xCrossRef
    Kikuchi M, Kanamori H (2003) Note on teleseismic body-wave inversion program. http://?www.?eri.?u-tokyo.?ac.?jp/?ETAL/?KIKUCHI/-/cite>
    Kikuchi M, Nakamura M, Yoshikawa K (2003) Source rupture processes of the 1944 Tonankai earthquake and the 1945 Mikawa earthquake derived from low-gain seismograms. Earth Planets Space 55:159-72CrossRef
    Koper KD, Hutko AR,
  • 作者单位:Masahiro Yoshimoto (1)
    Yoshiko Yamanaka (1)

    1. Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
  • 刊物类别:Earth Sciences, general; Geology; Geophysics/Geodesy;
  • 刊物主题:Earth Sciences, general; Geology; Geophysics/Geodesy;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1880-5981
文摘
Spatial and temporal variations in coseismic slip distribution are often obtained by rupture process analyses using teleseismic body waves. Many analyses using teleseismic body waves were based on the ray theory because of the very efficiently computable direct P-, S-, and major reflected waves near the source. The 2004 Sumatra-Andaman earthquake was one of the largest earthquakes recorded in history, and the data that are required for the entire rupture process analysis include later phases such as PP waves and a very long period phase called a W phase. However, calculating these later phases using the conventional ray theoretical method is difficult. Here we investigate the rupture process of the 2004 Sumatra-Andaman earthquake using complete Green’s functions, including all later phases such as PP waves and W phase. We use the direct solution method, which computes complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media, to calculate the Green’s functions. The obtained synthetic seismograms generated fit the observed seismograms quite well from a short period to a long period. The estimated slip distribution consists of four large slip areas: the largest slip occurred in the shallow part off the Sumatra west coast with a maximum slip of approximately 29 m, the second and third largest slips occurred in the shallow and deep parts of the Nicobar region with maximum slips of approximately 8 m and 7 m, respectively, and the fourth slip occurred in the middle Andaman region with a maximum slip of approximately 6 m. The estimated average rupture velocity is 2.8 km/s, but the rupture may have slowed between the Sumatra and the shallow Nicobar slip areas, and between the Nicobar and the middle Andaman slip areas. The delayed initiation of the shallow slips in the Nicobar region may possibly have been triggered by the deeper slip in the Nicobar region. There were no distinct depth-varying properties for the shallow and deep slips in the Nicobar region, as were reported for the 2011 Tohoku-Oki and 2010 Chile earthquake. Keywords Finite fault inversion Teleseismic body waves 2004 Sumatra-Andaman earthquake Direct solution method

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700