A hybrid quantum key distribution protocol based on extended unitary operations and fountain codes
详细信息    查看全文
  • 作者:Hong Lai (1) (2)
    Liyin Xue (3)
    Mehmet A. Orgun (2)
    Jinghua Xiao (1)
    Josef Pieprzyk (4)

    1. School of Science
    ; Beijing University of Posts and Telecommunications ; Beijing ; 100876 ; China
    2. Department of Computing
    ; Macquarie University ; Sydney ; NSW ; 2109 ; Australia
    3. Corporate Analytics
    ; The Australian Taxation Office ; Sydney ; NSW ; 2000 ; Australia
    4. School of Electrical Engineering and Computer Science
    ; Queensland University of Technology ; Brisbane ; QLD ; 4000 ; Australia
  • 关键词:Extended unitary operations ; Fountain codes ; Eavesdropping detection ; Authentication ; EPR pairs ; Key distribution protocols
  • 刊名:Quantum Information Processing
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:14
  • 期:2
  • 页码:697-713
  • 全文大小:462 KB
  • 参考文献:1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, Nov. 20鈥?2. IEEE Computer Society Press, pp. 124鈥?34 (1994)
    2. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802鈥?03 (1982) CrossRef
    3. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175-179. IEEE, New York (1984)
    4. Ekert, A.K.: Quantum cryptography based on Bell鈥檚 theorem. Phys. Rev. Lett. 67, 661鈥?63 (1991) CrossRef
    5. Zhang, Y., Li, C., Guo, G.: Comment on 鈥楺uantum key distribution without alternative measurements鈥? Phys. Rev. A. 63, 036301 (2001) CrossRef
    6. Goldenberg, L., Vaidman, L.: Counterfactual quantum key distribution without polarization encoding. Phys. Rev. Lett. 75, 1239鈥?241 (1995) CrossRef
    7. Tajima, A., Tanaka, A., Maeda, W., Takahashi, S., Tomita, A.: Practical quantum cryptosystem for metro area applications. IEEE J. Sel. Top. Quantum Electron. 13, 1031鈥?038 (2007) CrossRef
    8. Inoue, K.: Quantum key distribution technologies. IEEE J. Sel. Top. Quantum Electron. 12, 888鈥?96 (2006) CrossRef
    9. Simon, D.S., Lawrence, N., Trevino, J., DalNegro, L., Sergienko, A.V.: High-capacity quantum Fibonacci coding for key distribution. Phys. Rev. A. 87, 032312 (2013) CrossRef
    10. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: A quantum key distribution and identification protocol based on entanglement swapping. arXiv:quant-ph/0412014v1 2 Dec 2004.
    11. Long, G., Liu, X.: Theoretically efficient high-capacity quantum-key distribution scheme. Phys. Rev. A. 65, 032302鈥?2305 (2002) CrossRef
    12. Panduranga Rao, M.V., Jakobi, M.: Towards communication-efficient quantum oblivious key distribution. Phys. Rev. A. 87, 012331 (2013) CrossRef
    13. Maeda, W., Tanaka, A., Takahashi, S., Tajima, A., Tomita, A.: Technologies for quantum key distribution networks integrated with optical communication networks. IEEE J. Sel. Top. Quantum Electron. 16, 1591鈥?601 (2009) CrossRef
    14. Tanaka, A., Maeda, W., Takahashi, S., Tajima, A., Tomita, A.: Ensuring quality of shared keys through quantum key distribution for practical application. IEEE J. Sel. Top. Quantum Electron. 15, 1622鈥?629 (2009) CrossRef
    15. Yuen, H.P.: Key generation: foundations and a new quantum approach. IEEE J. Sel. Top. Quantum Electron. 15, 1630鈥?645 (2009) CrossRef
    16. Simon, D.S., Sergienko, A.V.: High capacity quantum key distribution via hyper-entangled degrees of freedom. New J. Phys. 16, 063052 (2014) CrossRef
    17. Duligall, J.L., Godfrey, M.S., Harrison, K.A., Munro, W.J., Rarity, J.G.: Low cost and compact quantum key distribution. New J. Phys. 8, 249鈥?65 (2006) CrossRef
    18. Duligall, J.L., Godfrey, M.S., Lynch, A., Munro, W.J., Harrison, K.A., Rarity, J.G.: Low cost quantum secret key growing for consumer transactions. In: Proceedings of the International Quantum Electronics Conference, pp. 4387012鈥?387012 (2007)
    19. Shih, H., Lee, K., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quantum Electron. 15, 1602鈥?606 (2009) CrossRef
    20. Gao, F., Qin, S., Guo, F., Wen, Q.Y.: Dense-coding attack on three party quantum key distribution protocols. IEEE J. Quantum Electron. 47(5), 630鈥?35 (2011) CrossRef
    21. Byers, J.W., Luby, M., Mitzenmacher, M., Rege A.: A digital fountain approach to reliable distribution of bulk data. In: Steenstrup, Martha (ed.) In: Proceedings of the ACM SIGCOMM 鈥?8 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM 鈥?8), pp. 56鈥?7. ACM, New York, NY, USA,
    22. Lai, H., Xiao, J.H., Orgun, M.A., Xue, L.Y., Pieprzyk, J.: Quantum direct secret sharing with efficient eavesdropping-check and authentication based on distributed fountain codes. Quantum Inf Process. 13, 895鈥?07 (2014) CrossRef
    23. Lin, Y., Liang, B., Li, B.: Data persistence in large-scale sensor networks with decentralized fountain codes. In: INFOCOM 2007. In: 26th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, 6鈥?2 May 2007, Anchorage, Alaska, USA. pp. 1658鈥?666, IEEE (2007)
    24. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein鈥揚odolsky鈥揜osen states. Phys. Rev. Lett. 69, 2881鈥?884 (1992) CrossRef
    25. Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process. 12, 685鈥?97 (2013) CrossRef
    26. Lo, H.K., Ko, T.M.: Some attacks on quantum-based cryptographic protocols. Quantum Inf. Comput. 5, 41鈥?8 (2005)
    27. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojanhorse attacks on quantum-key-distribution systems. Phys. Rev. A. 73, 022320 (2006) CrossRef
    28. Duan, R., Feng, Y., Ying, M.: Entanglement is not necessary for perfect discrimination between unitary operations. Phys. Rev. Lett. 98(10), 100503鈥?00507 (2007) CrossRef
    29. Gottesman, D., Lo, H.K., L眉tkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum inf. Comput. 4(5), 325鈥?60 (2004)
    30. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635鈥?638 (2000) CrossRef
    31. Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370鈥?373 (2001) CrossRef
    32. Guha, S., Hayden, P., Krovi, H., Lloyd, S., Lupo, C., Shapiro, J.H., Takeoka, M., Wilde, M.M.: Quantum enigma machines and the locking capacity of a quantum channel. Phys. Rev. X 4, 011016 (2014). arXiv:1307.0380
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Mathematics
    Engineering, general
    Computer Science, general
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1573-1332
文摘
In 1984, Bennett and Brassard designed the first quantum key distribution protocol, whose security is based on quantum indeterminacy. Since then, there has been growing research activities, aiming in designing new, more efficient and secure key distribution protocols. The work presents a novel hybrid quantum key distribution protocol. The key distribution is derived from both quantum and classical data. This is why it is called hybrid. The protocol applies extended unitary operations derived from four basic unitary operations and distributed fountain codes. Compared to other protocols published so far, the new one is more secure (provides authentication of parties and detection of eavesdropping) and efficient. Moreover, our protocol still works over noisy and lossy channels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700