Quantum-based secure communications with no prior key distribution
详细信息    查看全文
  • 作者:Marius Nagy ; Naya Nagy
  • 关键词:Quantum gates ; Quantum memory ; Measurement ; Cryptography ; Quantum protocol ; Key distribution ; Security ; Eavesdropping ; Intruder detection ; Bit rank
  • 刊名:Soft Computing - A Fusion of Foundations, Methodologies and Applications
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:20
  • 期:1
  • 页码:87-101
  • 全文大小:2,273 KB
  • 参考文献:Barnum H, Crépeau C, Gottesman D, Smith A, Tapp A (2002) Authentication of quantum messages. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, pp 449–458
    Bennett CH (1992) Quantum cryptography using any two nonorthogonal states. Phys Rev Lett 68(21):3121–3124MathSciNet CrossRef MATH
    Bennett CH, Brassard G (1984) Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. IEEE, New York, pp 175–179 (Bangalore, India, December 1984)
    Bennett CH, Brassard G, Mermin ND (1992) Quantum cryptography without Bell’s theorem. Phys Rev Lett 68(5):557–559MathSciNet CrossRef MATH
    Cao Z (2010) A note on Gottesman-Chuang quantum signature scheme. http://​eprint.​iacr.​org/​2010/​317
    Collins RJ, Donaldson RJ, Dunjko V, Wallden P, Clarke PJ, Andersson E, Jeffers J, Buller GS (2014) Realization of quantum digital signatures without the requirement of quantum memory. Phys Rev Lett 113:040502CrossRef
    Dunjko V, Wallden P, Andersson E (2014) Quantum digital signatures without quantum memory. Phys Rev Lett 112:040502–040506CrossRef
    Ekert A (1991) Quantum cryptography based on Bell’s theorem. Phys Rev Lett 67:661–663MathSciNet CrossRef MATH
    Gisin N et al (2011) Quantum storage of photonic entanglement in a crystal. Nature 469:508–511CrossRef
    Gottesman D, Chuang IL (2001) Quantum digital signatures. arXiv:​quant-ph-0105032
    Lu X, Feng DG (2005) Quantum digital signature based on quantum one-way functions. In: 7th International Conference on Advanced Communication Technology, ICACT 2005. IEEE, pp 514–517
    Lomonaco Jr SJ (ed) (2000) Quantum computation: a grand mathematical challenge for the twenty-first century and the millennium. In: Proceedings of Symposia in Applied Mathematics, vol 58. American Mathematical Society, Short Course, Washington, DC
    Lukin M et al (2012) Room-temperature quantum bit memory exceeding one second. Science 336:1283–1286CrossRef
    Nagy N, Akl SG (2007) Authenticated quantum key distribution without classical communication. Parallel Process Lett Special Issue Unconv Comput Probl 17(3):323–335MathSciNet CrossRef
    Nagy N, Nagy M, Akl SG (2010) Key distribution versus key enhancement in quantum cryptography. Parallel Process Lett 20(03):239–250
    Rivest RL, Shamir A, Adleman LM (1978) A method of obtaining digital signatures and public-key cryptosystems. Commun ACM 21(2):120–126MathSciNet CrossRef MATH
    Shannon C (1949) Communication theory of secrecy systems. Bell System Tech J 28(4):656–715MathSciNet CrossRef MATH
    Steger M, Saeedi K, Thewalt MLW, Morton JJL, Riemann H, Abrosimov NV, Becker P, Pohl HJ (2012) Quantum information storage for over 180s using donor spins in a Si\(^28\) “Semiconductor Vacuum”. Science 336(6086):1280–1283
    Tittel W et al (2011) Broadband waveguide quantum memory for entangled photons. Nature 469:512–515CrossRef
    Zeng G, Keitel CH (2002) Arbitrated quantum-signature scheme. Phys Rev A 65:042312. http://​link.​aps.​org/​doi/​10.​1103/​PhysRevA.​65.​042312
  • 作者单位:Marius Nagy (1) (2)
    Naya Nagy (1) (2)

    1. College of Computer Engineering and Science, Prince Mohammad Bin Fahd University, Al Azeziya, Eastern Province, KSA
    2. School of Computing, Queen’s University, Kingston, ON, Canada
  • 刊物类别:Engineering
  • 刊物主题:Numerical and Computational Methods in Engineering
    Theory of Computation
    Computing Methodologies
    Mathematical Logic and Foundations
    Control Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-7479
文摘
Current quantum cryptographic protocols aim to distribute a classical secret key to be used afterwards in classical encryption/decryption schemes. We show in this paper that quantum information processing can be used to do much more than just key distribution. Simple quantum transformations augmented with the ability to store qubits in a quantum memory are the building blocks of a class of protocols allowing two parties to communicate secretly by encoding/decoding the exchanged message directly through quantum means, without the need to establish a secret encryption/decryption key first. Consequently, our quantum mechanical process of securely transmitting a message through a public channel is conceptually simpler than the two-step scenario with a quantum distributed classical key. In addition, since the encrypted message is only transmitted through a quantum channel, copying and off-line analysis of the transmission is impossible. Our algorithms rely on the common assumption that public information can be authenticated. In terms of security, the protocol using three encoding bases achieves the maximum detection rate of 33 % per qubit tested. The probability of catching a potential eavesdropper can be brought as close to 1 as desired by increasing the length of the signature string attached to the message. Keywords Quantum gates Quantum memory Measurement Cryptography Quantum protocol Key distribution Security Eavesdropping Intruder detection Bit rank

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700