Oceanic Rossby waves induced by the meridional shift of the ITCZ in association with ENSO events
详细信息    查看全文
  • 作者:Hiroto Abe (1)
    Youichi Tanimoto (2) (3)
    Takuya Hasegawa (3) (4)
    Naoto Ebuchi (1)
    Kimio Hanawa (5)
  • 关键词:ITCZ ; Meridional migration ; Wind stress curl ; Rossby wave ; ENSO
  • 刊名:Journal of Oceanography
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:70
  • 期:2
  • 页码:165-174
  • 全文大小:5,757 KB
  • 参考文献:1. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Ni?o Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798 CrossRef
    2. Bain CL, Magnusdottir G, Smyth P, Stern H (2010) Diurnal cycle of the Intertropical Convergence Zone in the east Pacific. J Geophys Res 115:D23116. doi:10.1029/2010JD014835 CrossRef
    3. Bain CL, Paz JD, Kramer J, Magnusdottir G, Smyth P, Stern H, Wang CC (2011) Detecting the ITCZ in instantaneous satellite data using spatiotemporal statistical modeling: ITCZ climatology in the East Pacific. J Clim 24:216-30 CrossRef
    4. Boulanger JP, Fu LL (1996) Evidence of boundary reflection of Kelvin and first-mode Rossby waves from TOPEX/POSEIDON sea level data. J Geophys Res 101(C7):16361-6371. doi:10.1029/96JC01282 CrossRef
    5. Capotondi A, Alexander MA, Deser C (2003) Why are there Rossby wave maxima in the Pacific at 10°S and 13°N? J Phys Oceanogr 33:1549-563 CrossRef
    6. Dee DP, Coauthors (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553-97 CrossRef
    7. Fu LL, Qiu B (2002) Low-frequency variability of the North Pacific Ocean: the roles of boundary- and wind-driven baroclinic Rossby waves. J Geophys Res 107(C12):3220. doi:10.1029/2001JC001131 CrossRef
    8. Hasegawa T, Hanawa K (2003) Heat content variability related to ENSO events in the Pacific. J Phys Oceanogr 33:407-21 CrossRef
    9. Hasegawa T, Ando K, Ueki I, Mizuno K, Hosoda S (2013) Upper-ocean salinity variability in the tropical Pacific: case study for quasi-decadal shift during the 2000s using TRITON buoys and Argo floats. J Clim 26:8126-138 CrossRef
    10. Horel JD (1982) On the annual cycle of the tropical Pacific atmosphere and ocean. Mon Weather Rev 110:1863-878 CrossRef
    11. Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615-32 CrossRef
    12. Kaplan A, Kushnir Y, Cane MA, Blumenthal MB (1997) Reduced space optimal analysis for historical data sets: 136?years of Atlantic sea surface temperatures. J Geophys Res 102:27835-7860 CrossRef
    13. Kessler WS (1990) Observations of long Rossby waves in the northern tropical Pacific. J Geophys Res 95:5183-217 CrossRef
    14. Knapp KR, Coauthors (2011) Globally gridded satellite observations for climate studies. Bull Am Meteor Soc 92:893-07 CrossRef
    15. Kug J-S, Jin F–F, An S-I (2009) Two types of El Ni?o events: cold tongue El Ni?o and warm pool El Ni?o. J Clim 22:1499-515 CrossRef
    16. Larkin NK, Harrison DE (2005) On the definition of El Ni?o and associated seasonal average US weather anomalies. Geophys Res Lett 32:L13705. doi:10.1029/2005GL022738 CrossRef
    17. Levitus S (1982) Climatological atlas of the world ocean. NOAA professional paper 13. US Government Printing Office, Washington, DC. p 173
    18. Picaut J, Menkes, C, Boulanger JP, du Penhoat Y (1993) Dissipation in a Pacific equatorial long wave model. TOGA Notes :11-5
    19. Meyers G (1979) On the annual Rossby wave in the tropical North Pacific Ocean. J Phys Oceanogr 9:663-74 CrossRef
    20. Pazan S, Meyers G (1982) Interannual fluctuations of the tropical Pacific wind field and the Southern Oscillation. Mon Weather Rev 110:587-00 CrossRef
    21. Philander SG (1989) El Ni?o, La Ni?a, and the Southern Oscillation. Academic Press, London, p 293
    22. Qiu B, Chen S (2010) Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines. J Phys Oceanogr 40:2525-538 CrossRef
    23. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670 CrossRef
    24. Schopf PS, Suarez MJ (1988) Vacillations in a coupled ocean-atmosphere model. J Atmos Sci 45:549-66 CrossRef
    25. Simmons AJ, Willett KM, Jones PD, Thorne PW, Dee DP (2010) Low- frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J Geophys Res 115:D01110. doi:10.1029/2009JD012442
    26. Singh A, Delcroix T, Cravatte S (2011) Contrasting the flavors of El Ni?o-Southern Oscillation using sea surface salinity observations. J Geophys Res 116:C06016. doi:10.1029/2010JC006862
    27. Trenberth KE, Large WG, Olson JG (1990) The mean annual cycle in global ocean wind stress. J Phys Oceanogr 20:1742-760 CrossRef
    28. Waliser DE, Gautier C (1993) A satellite-derived climatology of the ITCZ. J Clim 6:2162-174 CrossRef
    29. Weisberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Ni?o-Southern Oscillation. Geophys Res Lett 24:779-82 CrossRef
    30. Xie SP, Philander SGH (1994) A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A:340-50 CrossRef
  • 作者单位:Hiroto Abe (1)
    Youichi Tanimoto (2) (3)
    Takuya Hasegawa (3) (4)
    Naoto Ebuchi (1)
    Kimio Hanawa (5)

    1. Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060-0819, Japan
    2. Faculty of Environmental Earth Science, Hokkaido University, Kita-10, Nishi-5, Kita-ku, Sapporo, 060-0810, Japan
    3. Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokosuka, 237-0061, Japan
    4. Earth Simulator Center, Japan Agency for Marne-Earth Science and Technology, Yokohama, 236-0001, Japan
    5. Department of Geophysics, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
  • ISSN:1573-868X
文摘
This study investigated the eastern Pacific Intertropical Convergence Zone (ITCZ) as an atmospheric forcing to the ocean by using various observed and reanalysis data sets over 29?years. Climatologically, a zonal band of positive wind stress curl (WSC) with a 10° meridional width was exhibited along the ITCZ. A southward shift of the positive WSC band during the El Ni?o phase induced a negative (positive) WSC anomaly along the northern (southern) portion of the ITCZ, and vice versa during the La Ni?a phase. This meridional dipole accounted for more than 25?% of interannual variances of the WSC anomalies (WSCAs), based on analysis of the period 1993-008. The negative (positive) WSCA in the northern portion of the ITCZ during the El Ni?o (La Ni?a) phase was collocated with a positive (negative) sea surface height anomaly (SSHA) that propagated westward as a Rossby wave all the way to the western North Pacific. This finding indicates that this off-equatorial Rossby wave is induced by the WSCA around the ITCZ. Our analysis of a 1.5-layer reduced gravity model revealed that the Rossby waves are mostly explained by wind stress forcing, rather than by reflection of an equatorial Kelvin wave on the eastern coastal boundary. The off-equatorial Rossby wave had the same SSHA polarity as the equatorial Kelvin wave, and generation of a phase-preserving Rossby wave without the Kelvin wave reflection was explained by meridional movement of the ITCZ. Thus, the ITCZ acts as an atmospheric bridge that connects the equatorial and off-equatorial oceanic waves.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700