Multi-scale temporal dynamics of epilithic algal assemblages: evidence from a Chinese subtropical mountain river network
详细信息    查看全文
  • 作者:Tao Tang ; Xinhuan Jia ; Wanxiang Jiang ; Qinghua Cai
  • 关键词:Multivariate time series modeling ; Multiple scales ; Algal dynamics ; Ecological guilds ; Biomonitoring
  • 刊名:Hydrobiologia
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:770
  • 期:1
  • 页码:289-299
  • 全文大小:697 KB
  • 参考文献:Allan, J. & M. Castillo, 2007. Stream Ecology: Structure and Function of Running Waters. Springer, New York.CrossRef
    Andrén, C. & A. Jarlman, 2008. Benthic diatoms as indicators of acidity in streams. Fundamental and Applied Limnology/Archiv für Hydrobiologie 173: 237–253.CrossRef
    Angeler, D. G., 2009. Species-specific and context-dependant disruption of temporal population fluctuations resulting from hypereutrophication events. Environmental Pollution 157: 3174–3182.CrossRef PubMed
    Angeler, D. G. & R. K. Johnson, 2012. Temporal scales and patterns of invertebrate biodiversity dynamics in boreal lakes recovering from acidification. Ecological Applications 22: 1172–1186.CrossRef PubMed
    Angeler, D. G., O. Viedma & J. M. Moreno, 2009. Statistical performance and information content of time lag analysis and redundancy analysis in time series modeling. Ecology 90: 3245–3257.CrossRef PubMed
    Angeler, D. G., C. Trigal, S. Drakare, R. K. Johnson & W. Goedkoop, 2010. Identifying resilience mechanisms to recurrent ecosystem perturbations. Oecologia 164: 231–241.CrossRef PubMed
    Angeler, D. G., S. Drakare & R. K. Johnson, 2011. Revealing the organization of complex adaptive systems through multivariate time series modeling. Ecology and Society 16: 5.CrossRef
    Baho, D. L., H. Peter & L. J. Tranvik, 2012. Resistance and resilience of microbial communities – temporal and spatial insurance against perturbations. Environmental Microbiology 14: 2283–2292.CrossRef PubMed
    Biggs, B., 1996. Patterns in benthic algae of streams. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 31–56.CrossRef
    Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.CrossRef PubMed
    Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.CrossRef
    Borcard, D., P. Legendre, C. Avois-Jacquet & H. Tuomisto, 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 1826–1832.CrossRef
    Borcard, D., F. Gillet & P. Legendre, 2011. Numerical Ecology with R. Springer, New York: 227–292.CrossRef
    Chinese National Environmental Protection Agency, 2002. Water and Wastewater Monitoring Methods, 4th ed. Chinese Environmental Science Publishing House, Beijing.
    Collins, S. L., F. Micheli & L. Hartt, 2000. A method to determine rates and patterns of variability in ecological communities. Oikos 91: 285–293.CrossRef
    DeNicola, D., 1996. Periphyton responses to temperature at different ecological levels. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 149–181.CrossRef
    Graba, M., S. Sauvage, F. Y. Moulin, G. Urrea, S. Sabater & J. M. Sanchez-Pérez, 2013. Interaction between local hydrodynamics and algal community in epilithic biofilm. Water Research 47: 2153–2163.CrossRef PubMed
    Hering, D., A. Haidekker, A. Schmidt-Kloiber, T. Barker, L. Buisson, W. Graf, W. Grenouillet, A. Lorenz, L. Sandin & S. Stendera, 2010. Monitoring the responses of freshwater ecosystems to climate change. In Kernan, M. R., R. W. Battarbee & B. Moss (eds), Climate Change Impacts on Freshwater Ecosystems. Wiley-Blackwell, Oxford: 84–118.CrossRef
    Hu, H. & Y. Wei, 2006. The Freshwater Algae of China: Systematics. Science Press, Beijing, Taxonomy and Ecology.
    Jao, C., 1988. Flora Algarum Sinigrum Aquae Dulcis (Tomus I): Zygnemataceae. Science Press, Beijing.
    Kampichler, C. & H. P. van der Jeugd, 2013. Determining patterns of variability in ecological communities: time lag analysis revisited. Environmental and Ecological Statistics 20: 271–284.CrossRef
    Kennen, J. G., D. J. Sullivan, J. T. May, A. H. Bell, K. M. Beaulieu & D. E. Rice, 2012. Temporal changes in aquatic-invertebrate and fish assemblages in streams of the north-central and northeastern US. Ecological Indicators 18: 312–329.CrossRef
    Korhonen, J. J., J. Soininen & H. Hillebrand, 2010. A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology 91: 508–517.CrossRef PubMed
    Korhonen, J. J., P. Köngäs & J. Soininen, 2013. Temporal variation of diatom assemblages in oligotrophic and eutrophic streams. European Journal of Phycology 48: 141–151.CrossRef
    Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.CrossRef
    Legendre, P. & O. Gauthier, 2014. Statistical methods for temporal and space–time analysis of community composition data. Proceedings of the Royal Society B: Biological Sciences 281: 20132728.CrossRef PubMed PubMedCentral
    Legendre, P., D. Borcard, G. Blanchet & S. Dray, 2010a. PCNM: PCNM spatial eigenfunction and principal coordinate analyses. R package version 2.1/r82.
    Legendre, P., M. D. Cáceres & D. Borcard, 2010b. Community surveys through space and time: testing the space-time interaction in the absence of replication. Ecology 91: 262–272.CrossRef PubMed
    Li, S. & L. Bi, 1998. Flora Algarum Sinicarum Aquae Dulcis (Tomus V): Ulothricales Ulvales Chaetophorales Trentepohliales Sphaeropleales. Science Press, Beijing.
    Miller, M. P., J. G. Kennen, J. A. Mabe & S. V. Mize, 2012. Temporal trends in algae, benthic invertebrate, and fish assemblages in streams and rivers draining basins of varying land use in the south-central United States, 1993-2007. Hydrobiologia 684: 15–33.CrossRef
    Passy, S. I., 2006. Diatom community dynamics in streams of chronic and episodic acidification: the roles of environment and time. Journal of Phycology 42: 312–323.CrossRef
    Passy, S. I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86: 171–178.CrossRef
    Passy, S., 2008. Species size and distribution jointly and differentially determine diatom densities in US streams. Ecology 89: 475–484.CrossRef PubMed
    Passy, S. & C. Larson, 2011. Succession in stream biofilms is an environmentally driven gradient of stress tolerance. Microbial Ecology 62: 414–424.CrossRef PubMed
    Patrick, R. & C. W. Reimer, 1966. The Diatoms of the United States (exclusive of Alaska and Hawaii). Volume One: Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. The Academy of Natural Sciences, Philadelphia.
    Patrick, R. & C. W. Reimer, 1975. The Diatoms of the United States (Exclusive of Alaska and Hawaii), Vol. Two. Entomoneidaceae, Cymbellaceae, Gomphonemaceae, Epithemiaceae. The Academy of Natural Sciences, Philadelphia, Part One.
    Philibert, A., P. Gell, P. Newall, B. Chessman & N. Bate, 2006. Development of diatom-based tools for assessing stream water quality in south-eastern Australia: assessment of environmental transfer functions. Hydrobiologia 572: 103–114.CrossRef
    Potapova, M. & D. F. Charles, 2003. Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology 48: 1311–1328.CrossRef
    Qi, Y., 1995. Flora Algarum Sinicarum Aquae Dulcis (Tomus IV): Bacillariophyta Centreae. Science Press, Beijing.
    Reid, M. A., M. C. Thoms & F. J. Dyer, 2006. Effects of spatial and temporal variation in hydraulic conditions on metabolism in cobble biofilm communities in an Australian upland stream. Journal of the North American Benthological Society 25: 756–767.CrossRef
    Rosemond, A. D., P. J. Mulholland & S. H. Brawley, 2000. Seasonally shifting limitation of stream periphyton: response of algal populations and assemblage biomass and productivity to variation in light, nutrients, and herbivores. Canadian Journal of Fisheries and Aquatic Sciences 57: 66–75.CrossRef
    Schneck, F. & A. S. Melo, 2013. High assemblage persistence in heterogeneous habitats: an experimental test with stream benthic algae. Freshwater Biology 58: 365–371.CrossRef
    Seeber, C., H. Hartmann & L. King, 2010. Land use change and causes in the Xiangxi catchment, Three Gorges Area derived from multispectral data. Journal of Earth Science 21: 846–855.CrossRef
    Shi, Z., 2004. Flora Algarum Sinicarum Aquae Dulcis (Tomus XII): Bacillariophyta Gomphonemacea. Science Press, Beijing.
    Smucker, N. J. & M. L. Vis, 2011. Acid mine drainage affects the development and function of epilithic biofilms in streams. Journal of the North American Benthological Society 30: 728–738.CrossRef
    Soininen, J. & P. Eloranta, 2004. Seasonal persistence and stability of diatom communities in rivers: are there habitat specific differences? European Journal of Phycology 39: 153–160.CrossRef
    Stenger-Kovács, C., E. Lengyel, L. O. Crossetti, V. Üveges & J. Padisák, 2013. Diatom ecological guilds as indicators of temporally changing stressors and disturbances in the small Torna-stream, Hungary. Ecological Indicators 24: 138–147.CrossRef
    Stevenson, J., 2014. Ecological assessments with algae: a review and synthesis. Journal of Phycology 50: 437–461.CrossRef
    Stevenson, R. J. & L. L. Bahls, 1999. Periphyton protocols. In Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling (eds), Rapid Bioassessment Protocols for Use in Streams and Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, 2nd ed. U.S. Environmental Protection Agency; Office of Water, Washington, DC: 1–23.
    Tan, X., X. Xia, Q. Zhao & Q. Zhang, 2014. Temporal variations of benthic diatom community and its main influencing factors in a subtropical river, China. Environmental Science and Pollution Research 21: 434–444.CrossRef PubMed
    Tang, T., 2003. Studies on Charasteristics of Epilithic Algae and Ecosystem Management of the Xiangxi River, PhD dissertation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan.
    Tang, T., S. Niu & D. Dudgeon, 2013a. Responses of epibenthic algal assemblages to water abstraction in Hong Kong streams. Hydrobiologia 703: 225–237.CrossRef
    Tang, T., N. Wu, F. Li, X. Fu & Q. Cai, 2013b. Disentangling the roles of spatial and environmental variables in shaping benthic algal assemblages in rivers of central and northern China. Aquatic Ecology 47: 453–466.CrossRef
    Tornés, E., V. Acuña, C. N. Dahm & S. Sabater, 2015. Flood disturbance effects on benthic diatom assemblage structure in a semiarid river network. Journal of Phycology 51: 133–143.CrossRef
    Virtanen, L. K., P. Köngäs, S. Aitto-Oja & J. Soininen, 2011. Is temporal occurrence of diatoms related to species traits, local abundance, and regional distribution? Journal of Phycology 47: 1445–1453.CrossRef
    Wang, J., B. Wang & Z. Luo, 1997. Dictionary of the Yangtze River. Wuhan Press, Wuhan.
    Wood, S., 2014. Package ‘mgcv’. Online at http://​cran.​r-project.​org/​web/​packages/​mgcv/​mgcv.​pdf .
    Yang, G., T. Tang & D. Dudgeon, 2009. Spatial and seasonal variations in benthic algal assemblages in streams in monsoonal Hong Kong. Hydrobiologia 632: 189–200.CrossRef
    Zar, J. H., 1999. Biostatistical Analysis, 4th ed. Prentice Hall Inc., New Jersey.
    Zhu, H., 2007. Flora Algarum Sinicarum Aquae Dulcis (Tomus IX): Cyanophyta Hormogonophyceae. Science Press, Beijing.
    Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.CrossRef
    Zuur, A. F., E. N. Ieno & C. S. Elphick, 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1: 3–14.CrossRef
  • 作者单位:Tao Tang (1)
    Xinhuan Jia (1) (2)
    Wanxiang Jiang (1) (3)
    Qinghua Cai (1)

    1. State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
    2. Research Institute of Subtropical Forestry, China Academy of Forestry, Fuyang, 311400, China
    3. Zaozhuang University, Zaozhuang, 277160, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Hydrobiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5117
文摘
Research on multi-scale temporal dynamics of lotic algal assemblages remains scarce. In this study, we analyzed epilithic algae sampled monthly from a Chinese subtropical mountain river network from 2004 to 2007, by using a multivariate time series modeling approach. We hypothesized that (1) multi-scale temporal dynamics exist within algal communities; (2) physical and chemical conditions drive algal temporal dynamics; and (3) tributary sites differ in algal temporal changes. This study revealed 2–4 site-specific algal temporal dynamics, contributed by 23–45% component taxa. Among the time-related taxa, percentages of high profile guild taxa were higher than both the low profile and the motile guild taxa. Several algal temporal dynamics were found to be driven by water temperature, conductivity, or current velocity, within which influences of conductivity at two sites resulted in directional changes in algal communities. Furthermore, tributary sites differed in algal temporal changes when compared to the two mainstream sites. Our findings imply that natural fluctuations and agricultural disturbance together shaped algal temporal dynamics in the studied river network. In conclusion, for accurately tracking algal temporal dynamics, we recommend that long-term and high-frequency biomonitoring protocols are developed. Moreover, both the mainstream and tributary sites should be monitored simultaneously.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700