Inter-annual variability in water table depth controls net ecosystem carbon dioxide exchange in a boreal bog
详细信息    查看全文
  • 作者:Ian B. Strachan ; Luc Pelletier ; Marie-Claude Bonneville
  • 关键词:Net ecosystem CO2 exchange ; Peatland ; Gross ecosystem productivity ; Ecosystem respiration ; Water table depth
  • 刊名:Biogeochemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:127
  • 期:1
  • 页码:99-111
  • 全文大小:652 KB
  • 参考文献:Amiro B (2010) Estimating annual carbon dioxide eddy fluxes using open-path analysers for cold forest sites. Agric For Meteorol 150:1366–1372CrossRef
    Aurela M, Laurila T, Tuovinen JP (2001) Seasonal CO2 balances of a subarctic mire. J Geophys Res 106:1623–1637CrossRef
    Aurela M, Laurila T, Tuovinen J-P (2002) Annual CO2 balance of a subarctic fen in northern Europe: importance of the wintertime efflux. J Geophys Res 107:4607. doi:10.​1029/​2002JD002055 CrossRef
    Aurela M, Laurila T, Tuovinen J-P (2004) The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophys Res Lett 31:L16119. doi:10.​1029/​2004GL020315 CrossRef
    Baldocchi D (1997) Flux footprints within and over forest canopies. Bound-Layer Meteorol 85:273–292. doi:10.​1023/​A:​1000472717236 CrossRef
    Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Change Biol 9:479–492CrossRef
    Barr AG, Black TA, Hogg EH et al (2004) Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agric For Meteorol 126:237–255. doi:10.​1016/​j.​agrformet.​2004.​06.​011 CrossRef
    Belyea B, Clymo A (1999) Do hollows control the rate of peat bog growth? In: Standen V, Tallis J, Meade R (eds) Patterned mires and mire pools. British Ecological Society, London, pp 55–65
    Bergeron O, Strachan IB (2011) CO2 sources and sinks in urban and suburban areas of a northern mid-latitude city. Atmos Environ 45:1564–1573CrossRef
    Bridgham SD, Pastor J, Dewey B et al (2008) Rapid carbon response of peatlands to climate change. Ecology 89:3041–3048CrossRef
    Burba GG, McDermitt DK, Grelle A et al (2008) Addressing the influence of instrument surface heat exchange on the measurements of CO2 flux from open-path gas analyzers. Glob Change Biol 14:1854–1876. doi:10.​1111/​J.​1365-2486.​2008.​01606.​X CrossRef
    Clymo RS (1984) The limits to peat bog growth. Philos Trans R Soc Lond B 303:605–654. doi:10.​1098/​rstb.​1984.​0002 CrossRef
    Flanagan LB, Syed KH (2011) Stimulation of both photosynthesis and respiration in response to warmer and drier conditions in a boreal peatland ecosystem. Glob Change Biol 17:2271–2287. doi:10.​1111/​j.​1365-2486.​2010.​02378.​x CrossRef
    Fraser CJD, Roulet NT, Moore TR (2001) Hydrology and dissolved organic carbon biogeochemistry in an ombrotrophic bog. Hydrol Process 15:3151–3166. doi:10.​1002/​hyp.​322 CrossRef
    Frolking SE, Bubier JL, Moore TR et al (1998) Relationship between ecosystem productivity and photosynthetically active radiation for northern peatlands. Glob Biogeochem Cycles 12:115–126. doi:10.​1029/​97GB03367 CrossRef
    Grelle A, Burba G (2007) Fine-wire thermometer to correct CO2 fluxes by open-path analyzers for artificial density fluctuations. Agr For Meteorol 147:48–57. doi:10.​1016/​J.​Agrformet.​2007.​06.​007 CrossRef
    Harley PC, Tenhunen JD, Murray KJ, Beyers J (1989) Irradiance and temperature effects on photosynthesis of tussock tundra Sphagnum mosses from the foothills of the Philip Smith Mountains, Alaska. Oecologia 79:251–259. doi:10.​1007/​BF00388485 CrossRef
    Helfter C, Campbell C, Dinsmore KJ et al (2015) Drivers of long-term variability in CO2 net ecosystem exchange in a temperate peatland. Biogeosciences 12:1799–1811. doi:10.​5194/​bg-12-1799-2015 CrossRef
    Hirata R, Hirano T, Saigusa N et al (2007) Seasonal and interannual variations in carbon dioxide exchange of a temperate larch forest. Agric For Meteorol 147:110–124. doi:10.​1016/​j.​agrformet.​2007.​07.​005 CrossRef
    Humphreys ER, Charron C, Brown M, Jones R (2014) Two bogs in the Canadian Hudson Bay Lowlands and a temperate bog reveal similar annual net ecosystem exchange of CO2. Arct Antarct Alp Res 46:103–113. doi:10.​1657/​1938-4246.​46.​1.​103 CrossRef
    Hutchinson MF, McKenney DW, Lawrence K et al (2009) Development and testing of Canada-wide interpolated spatial models of daily minimum-maximum temperature and precipitation for 1961–2003. J Appl Meteorol Climatol 48:725–741. doi:10.​1175/​2008JAMC1979.​1 CrossRef
    Koehler AK, Sottocornola M, Kiely G (2011) How strong is the current carbon sequestration of an Atlantic blanket bog? Glob Change Biol 17:309–319CrossRef
    Lafleur PM, Humphreys ER (2008) Spring warming and carbon dioxide exchange over low Arctic tundra in central Canada. Glob Change Biol 14:740–756. doi:10.​1111/​j.​1365-2486.​2007.​01529.​x CrossRef
    Lafleur PM, Griffis TJ, Rouse WR (2001) Interannual variability in net ecosystem CO2 exchange at the arctic treeline. Arct Antarct Alp Res 33:149–157CrossRef
    Lafleur PM, Roulet NT, Bubier JL et al (2003) Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Glob Biogeochem Cycles 17:1036. doi:10.​1029/​2002GB001983 CrossRef
    Lafleur PM, Moore TR, Roulet NT, Frolking S (2005) Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8:619–629. doi:10.​1007/​s10021-003-0131-2 CrossRef
    Laine A, Byrne KA, Kiely G, Tuittila E-S (2007) Patterns in vegetation and CO2 dynamics along a water level gradient in a lowland blanket bog. Ecosystems 10:890–905. doi:10.​1007/​s10021-007-9067-2 CrossRef
    Lindroth A, Lund M, Nilsson M et al (2007) Environmental controls on the CO2 exchange in north European mires. Tellus 59b:812–825CrossRef
    Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323. doi:10.​2307/​2389824 CrossRef
    Lund M, Lafleur PM, Roulet NT et al (2010) Variability in exchange of CO2 across 12 northern peatland and tundra sites. Glob Change Biol 16:2436–2448
    MacDonald GM, Beilman DW, Kremenetski KV et al (2006) Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314:285–288. doi:10.​1126/​Science.​1131722 CrossRef
    McVeigh P, Sottocornola M, Foley N et al (2014) Meteorological and functional response partitioning to explain interannual variability of CO2 exchange at an Irish Atlantic blanket bog. Agric For Meteorol 194:8–19CrossRef
    Mkhabela MS, Amiro BD, Barr AG et al (2009) Comparison of carbon dynamics and water use efficiency following fire and harvesting in Canadian boreal forests. Agr For Meteorol 149:783–794. doi:10.​1016/​J.​Agrformet.​2008.​10.​025 CrossRef
    Moore TR, De Young A, Bubier JL et al (2011) A multi-year record of methane flux at the Mer Bleue bog, southern Canada. Ecosystems 14:646–657CrossRef
    Morgenstern K, Andrew Black T, Humphreys ER et al (2004) Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas-fir forest during an El Niño/La Niña cycle. Agric For Meteorol 123:201–219. doi:10.​1016/​j.​agrformet.​2003.​12.​003 CrossRef
    Nilsson M, Sagerfors J, Buffam I et al (2008) Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire—a significant sink after accounting for all C-fluxes. Glob Change Biol 14:2317–2332CrossRef
    Peichl M, Öquist M, Löfvenius MO et al (2014) A 12-year record reveals pre-growing season temperature and water table level threshold effects on the net carbon dioxide exchange in a boreal fen. Environ Res Lett 9:055006. doi:10.​1088/​1748-9326/​9/​5/​055006 CrossRef
    Pelletier L, Garneau M, Moore TR (2011) Variation in CO2 exchange over three summers at microform scale in a boreal bog, Eastmain region, Québec, Canada. J Geophys Res 116:G03019. doi:10.​1029/​2011JG001657
    Roulet NT, Lafleur PM, Richard PJH et al (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob Change Biol 13:397–411. doi:10.​1111/​J.​1365-2486.​2006.​01292.​X CrossRef
    Sagerfors J, Lindroth A, Grelle A et al (2008) Annual CO2 exchange between a nutrient-poor, minerotrophic, boreal mire and the atmosphere. J Geophys Res 113:G01001. doi:10.​1029/​2006JG000306
    Smart CM (1994) Gene expression during leaf senescence. New Phytol 126:419–448. doi:10.​1111/​j.​1469-8137.​1994.​tb04243.​x CrossRef
    Sottocornola M, Kiely G (2010) Hydro-meteorological controls on the CO2 exchange variation in an Irish blanket bog. Agric For Meteorol 150:287–297. doi:10.​1016/​j.​agrformet.​2009.​11.​013 CrossRef
    Sulman BN, Desai AR, Saliendra NZ et al (2010) CO2 fluxes at northern fens and bogs have opposite responses to inter-annual fluctuations in water table. Geophys Res Lett. doi:10.​1029/​2010gl044018
    Tarnocai C (2006) The effect of climate change on carbon in Canadian peatlands. Glob Planet Change 53:222–232CrossRef
    Teklemariam T, Lafleur P, Moore TR et al (2010) The direct and indirect effects of inter-annual meteorological variability on ecosystem carbon dioxide exchange at a temperate ombrotrophic bog. Agric For Meteorol 150:1402–1411CrossRef
    Van Bellen S, Dallaire P-L, Garneau M, Bergeron Y (2011) Quantifying spatial and temporal Holocene carbon accumulation in ombrotrophic peatlands of the Eastmain region, Quebec, Canada. Glob Biogeochem Cycles 25:GB2016. doi:10.​1029/​2010GB003877
    Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–526. doi:10.​1175/​1520-0426(1997)014<0512:​QCAFSP>2.​0.​CO;2 CrossRef
    Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water-vapor transfer. Q J R Meteorol Soc 106:85–100CrossRef
    Wu J, Roulet NT (2014) Climate change reduces the capacity of northern peatlands to absorb the atmospheric carbon dioxide: the different responses of bogs and fens. Glob Biogeochem Cycles 28:1005–1024. doi:10.​1002/​2014GB004845 CrossRef
    Wu J, Roulet NT, Nilsson M et al (2012) Simulating the carbon cycling of northern peatlands using a land surface scheme coupled to a wetland carbon model (CLASS3W-MWM). Atmos Ocean 50:487–506. doi:10.​1080/​07055900.​2012.​730980 CrossRef
    Yu Z, Loisel J, Brosseau DP et al (2010) Global peatland dynamics since the last glacial maximum. Geophys Res Lett 37:L13402. doi:10.​1029/​2010GL043584
    Yu Z, Loisel J, Turetsky MR et al (2013) Evidence for elevated emissions from high-latitude wetlands contributing to high atmospheric CH4 concentration in the early Holocene. Glob Biogeochem Cycles 27:131–140. doi:10.​1002/​gbc.​20025 CrossRef
  • 作者单位:Ian B. Strachan (1)
    Luc Pelletier (1)
    Marie-Claude Bonneville (1)

    1. Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste Anne de Bellevue, QC, H9X 3V9, Canada
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geochemistry
    Biochemistry
    Soil Science and Conservation
    Terrestrial Pollution
  • 出版者:Springer Netherlands
  • ISSN:1573-515X
文摘
The net ecosystem carbon dioxide (CO2) exchange (NEE) between boreal bogs and the atmosphere and its environmental drivers remains understudied despite the large carbon store of these northern ecosystems. We present NEE measurements using the eddy covariance technique in a boreal ombrotrophic bog over five growing seasons and four winters. Inter-annual variability in CO2 uptake was most pronounced in June–September (−4 to −122 g CO2–C m−2), less in March–May (−1 to −21 g CO2–C m−2) and very small in October–November (−2 to −4 g CO2–C m−2). Variability in NEE between years was linked primarily to changes in water table depth (WTD). Strong and significant relationships (r2 > 0.89, p ≤ 0.05) were found between summer (June–September) maximum photosynthetic rate (A max), net ecosystem productivity (NEP), gross ecosystem productivity and WTD. Adding air temperature through multiple regression analysis further increased correlation between summer A max, NEP, and WTD (r2 = 0.96, p = 0.05). In contrast to previous studies examining controls on peatland CO2 exchange, no relationships were found between productivity or cumulative exchange and early season temperature, timing of the snowmelt or growing season length. Keywords Net ecosystem CO2 exchange Peatland Gross ecosystem productivity Ecosystem respiration Water table depth

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700