The differential effect of low- versus high-frequency random noise stimulation in the treatment of tinnitus
详细信息    查看全文
  • 作者:Kathleen Joos (1) (2)
    Dirk De Ridder (3) (4)
    Sven Vanneste (2) (5)

    1. Department of Neurosurgery
    ; University Hospital Antwerp ; Wilrijkstraat 10 ; 2650 ; Edegem ; Belgium
    2. Department of Translational Neuroscience
    ; Faculty of Medicine ; University of Antwerp ; Antwerp ; Belgium
    3. Department of Surgical Sciences
    ; Dunedin School of Medicine ; University of Otago ; Dunedin ; New Zealand
    4. BRAI虏N & TRI
    ; Sint Augustinus Hospital ; Antwerp ; Belgium
    5. School of Behavioral and Brain Sciences
    ; The University of Texas ; Dallas ; TX ; USA
  • 关键词:Tinnitus ; Noninvasive neuromodulation ; Transcranial random noise stimulation (tRNS) ; Loudness ; Distress ; Auditory cortex
  • 刊名:Experimental Brain Research
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:233
  • 期:5
  • 页码:1433-1440
  • 全文大小:271 KB
  • 参考文献:1. Axelsson, A, Prasher, D (2000) Tinnitus induced by occupational and leisure noise. Noise Health 2: pp. 47-54
    2. Axelsson, A, Ringdahl, A (1989) Tinnitus鈥揳 study of its prevalence and characteristics. Br J Audiol 23: pp. 53-62 CrossRef
    3. Barbas, H, Zikopoulos, B, Timbie, C (2011) Sensory pathways and emotional context for action in primate prefrontal cortex. Biol Psychiatry 69: pp. 1133-1139 CrossRef
    4. Boly, M, Faymonville, ME, Peigneux, P (2005) Cerebral processing of auditory and noxious stimuli in severely brain injured patients: differences between VS and MCS. Neuropsychol Rehabil 15: pp. 283-289 CrossRef
    5. Burwell, RD (2000) The parahippocampal region: corticocortical connectivity. Ann N Y Acad Sci 911: pp. 25-42 CrossRef
    6. Canolty, RT, Edwards, E, Dalal, SS (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313: pp. 1626-1628 CrossRef
    7. Chaieb, L, Kovacs, G, Cziraki, C, Greenlee, M, Paulus, W, Antal, A (2009) Short-duration transcranial random noise stimulation induces blood oxygenation level dependent response attenuation in the human motor cortex. Exp Brain Res 198: pp. 439-444 CrossRef
    8. De Ridder D, Vanneste S (In Press) Targeting the parahippocampal area by auditory cortex stimulation in tinnitus. Brain Stimul
    9. Ridder, D, Mulder, G, Walsh, V, Muggleton, N, Sunaert, S, Moller, A (2004) Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus: case report. J Neurosurg 100: pp. 560-564 CrossRef
    10. Ridder, D, Verstraeten, E, Kelen, K (2005) Transcranial magnetic stimulation for tinnitus: influence of tinnitus duration on stimulation parameter choice and maximal tinnitus suppression. Otol Neurotol 26: pp. 616-619 CrossRef
    11. Ridder, D, Mulder, G, Verstraeten, E (2007) Auditory cortex stimulation for tinnitus. Acta Neurochir Suppl 97: pp. 451-462 CrossRef
    12. Ridder, D, Loo, E, Kelen, K, Menovsky, T, Heyning, P, Moller, A (2007) Do tonic and burst TMS modulate the lemniscal and extralemniscal system differentially?. Int J Med Sci 4: pp. 242-246 CrossRef
    13. Ridder, D, Vanneste, S, Loo, E, Plazier, M, Menovsky, T, Heyning, P (2010) Burst stimulation of the auditory cortex: a new form of neurostimulation for noise-like tinnitus suppression. J Neurosurg 112: pp. 1289-1294 CrossRef
    14. Ridder, D, Elgoyhen, AB, Romo, R, Langguth, B (2011) Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci USA 108: pp. 8075-8080 CrossRef
    15. Ridder, D, Loo, E, Vanneste, S (2011) Theta-gamma dysrhythmia and auditory phantom perception. J Neurosurg 114: pp. 912-921 CrossRef
    16. Ridder, D, Vanneste, S, Freeman, W (2012) The Bayesian brain: phantom percepts resolve sensory uncertainty. Neurosci Biobehav Rev.
    17. Ridder, D, Vanneste, S, Weisz, N, Londero, A, Schlee, W, Elgoyhen, AB, Langguth, B (2013) An integrative model of auditory phantom perception: tinnitus as a unified percept of interacting separable subnetworks. Neurosci Biobehav Rev.
    18. Eggermont, JJ, Roberts, LE (2004) The neuroscience of tinnitus. Trends Neurosci 27: pp. 676-682 CrossRef
    19. Eggermont, JJ, Roberts, LE (2012) The neuroscience of tinnitus: understanding abnormal and normal auditory perception. Front Syst Neurosci 6: pp. 53 CrossRef
    20. Erlandsson, SI, Holgers, KM (2001) The impact of perceived tinnitus severity on health-related quality of life with aspects of gender. Noise Health 3: pp. 39-51
    21. Fertonani, A, Pirulli, C, Miniussi, C (2011) Random noise stimulation improves neuroplasticity in perceptual learning. J Neurosci 31: pp. 15416-15423 CrossRef
    22. Folmer, RL, Griest, SE (2003) Chronic tinnitus resulting from head or neck injuries. Laryngoscope 113: pp. 821-827 CrossRef
    23. Freeman, DK, Eddington, DK, Rizzo, JF, Fried, SI (2010) Selective activation of neuronal targets with sinusoidal electric stimulation. J Neurophysiol 104: pp. 2778-2791 CrossRef
    24. Fregni, F, Boggio, PS, Nitsche, MA, Marcolin, MA, Rigonatti, SP, Pascual-Leone, A (2006) Treatment of major depression with transcranial direct current stimulation. Bipolar Disord 8: pp. 203-204 CrossRef
    25. Fregni, F, Marcondes, R, Boggio, PS (2006) Transient tinnitus suppression induced by repetitive transcranial magnetic stimulation and transcranial direct current stimulation. Eur J Neurol 13: pp. 996-1001 CrossRef
    26. Garin, P, Gilain, C, Damme, JP, Fays, K, Jamart, J, Ossemann, M, Vandermeeren, Y (2011) Short- and long-lasting tinnitus relief induced by transcranial direct current stimulation. J Neurol 258: pp. 1940-1948 CrossRef
    27. Grenier, F, Timofeev, I, Steriade, M (2001) Focal synchronization of ripples (80鈥?00聽Hz) in neocortex and their neuronal correlates. J Neurophysiol 86: pp. 1884-1898
    28. Jastreboff, PJ (1990) Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8: pp. 221-254 CrossRef
    29. Joliot, M, Ribary, U, Llinas, R (1994) Human oscillatory brain activity near 40聽Hz coexists with cognitive temporal binding. Proc Natl Acad Sci USA 91: pp. 11748-11751 CrossRef
    30. Joos, K, Ridder, D, Heyning, P, Vanneste, S (2014) Polarity specific suppression effects of transcranial direct current stimulation for tinnitus. Neural Plast 2014: pp. 930860
    31. Kaltenbach, JA, Afman, CE (2000) Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res 140: pp. 165-172 CrossRef
    32. Kleinjung, T, Eichhammer, P, Langguth, B (2005) Long-term effects of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic tinnitus. Otolaryngol Head Neck Surg 132: pp. 566-569 CrossRef
    33. Lakatos, P, Shah, AS, Knuth, KH, Ulbert, I, Karmos, G, Schroeder, CE (2005) An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J Neurophysiol 94: pp. 1904-1911 CrossRef
    34. Langers, DR, Kleine, E, Dijk, P (2012) Tinnitus does not require macroscopic tonotopic map reorganization. Front Syst Neurosci 6: pp. 2 CrossRef
    35. Langguth, B, Ridder, D, Dornhoffer, JL (2008) Controversy: does repetitive transcranial magnetic stimulation/transcranial direct current stimulation show efficacy in treating tinnitus patients?. Brain Stimul 1: pp. 192-205 CrossRef
    36. Langguth, B, Schecklmann, M, Lehner, A (2012) Neuroimaging and neuromodulation: complementary approaches for identifying the neuronal correlates of tinnitus. Front Syst Neurosci 6: pp. 15 CrossRef
    37. Laureys, S, Faymonville, ME, Degueldre, C (2000) Auditory processing in the vegetative state. Brain 123: pp. 1589-1601 CrossRef
    38. Leaver, AM, Renier, L, Chevillet, MA, Morgan, S, Kim, HJ, Rauschecker, JP (2011) Dysregulation of limbic and auditory networks in tinnitus. Neuron 69: pp. 33-43 CrossRef
    39. Llinas, RR, Steriade, M (2006) Bursting of thalamic neurons and states of vigilance. J Neurophysiol 95: pp. 3297-3308 CrossRef
    40. Llinas, RR, Ribary, U, Jeanmonod, D, Kronberg, E, Mitra, PP (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA 96: pp. 15222-15227 CrossRef
    41. Llinas, R, Urbano, FJ, Leznik, E, Ramirez, RR, Marle, HJ (2005) Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 28: pp. 325-333 CrossRef
    42. Lockwood, AH, Salvi, RJ, Coad, ML, Towsley, ML, Wack, DS, Murphy, BW (1998) The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity. Neurology 50: pp. 114-120 CrossRef
    43. Lorenz, J, Minoshima, S, Casey, KL (2003) Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126: pp. 1079-1091 CrossRef
    44. Luczak, A, Bartho, P, Harris, KD (2009) Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron 62: pp. 413-425 CrossRef
    45. Marcondes, RA, Sanchez, TG, Kii, MA, Ono, CR, Buchpiguel, CA, Langguth, B, Marcolin, MA (2010) Repetitive transcranial magnetic stimulation improve tinnitus in normal hearing patients: a double-blind controlled, clinical and neuroimaging outcome study. Eur J Neurol 17: pp. 38-44 CrossRef
    46. Mirz, F, Gjedde, A, Sodkilde-Jrgensen, H, Pedersen, CB (2000) Functional brain imaging of tinnitus-like perception induced by aversive auditory stimuli. Neuroreport 11: pp. 633-637 CrossRef
    47. Muhlnickel, W, Elbert, T, Taub, E, Flor, H (1998) Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA 95: pp. 10340-10343 CrossRef
    48. Norena, AJ, Eggermont, JJ (2006) Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. Neuroreport 17: pp. 559-563 CrossRef
    49. Plazier, M, Joos, K, Vanneste, S, Ost, J, Ridder, D (2012) Bifrontal and bioccipital transcranial direct current stimulation (tDCS) does not induce mood changes in healthy volunteers: a placebo controlled study. Brain Stimul 5: pp. 454-461 CrossRef
    50. Plewnia, C, Reimold, M, Najib, A, Brehm, B, Reischl, G, Plontke, SK, Gerloff, C (2007) Dose-dependent attenuation of auditory phantom perception (tinnitus) by PET-guided repetitive transcranial magnetic stimulation. Hum Brain Mapp 28: pp. 238-246 CrossRef
    51. Ponomarenko, AA, Li, JS, Korotkova, TM, Huston, JP, Haas, HL (2008) Frequency of network synchronization in the hippocampus marks learning. Eur J Neurosci 27: pp. 3035-3042 CrossRef
    52. Ramirez, RR, Kopell, BH, Butson, CR, Gaggl, W, Friedland, DR, Baillet, S (2009) Neuromagnetic source imaging of abnormal spontaneous activity in tinnitus patient modulated by electrical cortical stimulation. Conf Proc IEEE Eng Med Biol Soc 2009: pp. 1940-1944
    53. Ramirez, RR, Kopell, BH, Butson, CR, Gaggl, W, Friedland, DR, Baillet, S (2009) Neuromagnetic source imaging of abnormal spontaneous activity in tinnitus patient modulated by electrical cortical stimulation. Conf Proc IEEE Eng Med Biol Soc 1: pp. 1940-1944
    54. Rauschecker, JP, leaver, AM, Muhlau, M (2010) Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron 66: pp. 819-826 CrossRef
    55. Roberts, LE, Eggermont, JJ, Caspary, DM, Shore, SE, Melcher, JR, Kaltenbach, JA (2010) Ringing ears: the neuroscience of tinnitus. J Neurosci 30: pp. 14972-14979 CrossRef
    56. Rodieck, RW, Kiang, NY, Gerstein, GL (1962) Some quantitative methods for the study of spontaneous activity of single neurons. Biophys J 2: pp. 351-368 CrossRef
    57. Rossi, S, Capua, A, Ulivelli, M, Bartalini, S, Falzarano, V, Filippone, G, Passero, S (2007) Effects of repetitive transcranial magnetic stimulation on chronic tinnitus: a randomised, crossover, double blind, placebo controlled study. J Neurol Neurosurg Psychiatry 78: pp. 857-863 CrossRef
    58. Saiote, C, Polania, R, Rosenberger, K, Paulus, W, Antal, A (2013) High-frequency TRNS reduces BOLD activity during visuomotor learning. PLoS One 8: pp. e59669 CrossRef
    59. Salvi, RJ, Wang, J, Ding, D (2000) Auditory plasticity and hyperactivity following cochlear damage. Hear Res 147: pp. 261-274 CrossRef
    60. Schecklmann, M, Lehner, A, Poeppl, TB (2013) Auditory cortex is implicated in tinnitus distress: a voxel-based morphometry study. Brain Struct Funct 218: pp. 1061-1070 CrossRef
    61. Schreiber, BE, Agrup, C, Haskard, DO, Luxon, LM (2010) Sudden sensorineural hearing loss. Lancet 375: pp. 1203-1211 CrossRef
    62. Scott, B, Lindberg, P (2000) Psychological profile and somatic complaints between help-seeking and non-help-seeking tinnitus subjects. Psychosomatics 41: pp. 347-352 CrossRef
    63. Siebert, WM (1965) Some implications of the stochastic behavior of primary auditory neurons. Kybernetik 2: pp. 206-215 CrossRef
    64. Smith, JA, Mennemeier, M, Bartel, T, Chelette, KC, Kimbrell, T, Triggs, W, Dornhoffer, JL (2007) Repetitive transcranial magnetic stimulation for tinnitus: a pilot study. Laryngoscope 117: pp. 529-534 CrossRef
    65. Smits, M, Kovacs, S, Ridder, D, Peeters, RR, Hecke, P, Sunaert, S (2007) Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus. Neuroradiology 49: pp. 669-679 CrossRef
    66. Steriade, M (2006) Grouping of brain rhythms in corticothalamic systems. Neuroscience 137: pp. 1087-1106 CrossRef
    67. Terney, D, Chaieb, L, Moliadze, V, Antal, A, Paulus, W (2008) Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci 28: pp. 14147-14155 CrossRef
    68. Loo, E, Gais, S, Congedo, M (2009) Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PLoS One 4: pp. e7396 CrossRef
    69. Vanneste, S, Ridder, D (2011) Bifrontal transcranial direct current stimulation modulates tinnitus intensity and tinnitus-distress-related brain activity. Eur J Neurosci 34: pp. 605-614 CrossRef
    70. Vanneste, S, Plazier, M, Loo, E, Heyning, PV, Congedo, M, Ridder, D (2010) The neural correlates of tinnitus-related distress. Neuroimage 52: pp. 470-480 CrossRef
    71. Vanneste, S, Plazier, M, Ost, J, Loo, E, Heyning, P, Ridder, D (2010) Bilateral dorsolateral prefrontal cortex modulation for tinnitus by transcranial direct current stimulation: a preliminary clinical study. Exp Brain Res 202: pp. 779-785 CrossRef
    72. Vanneste, S, Plazier, M, Loo, E, Heyning, P, Ridder, D (2010) The differences in brain activity between narrow band noise and pure tone tinnitus. PLoS One 5: pp. e13618 CrossRef
    73. Vanneste, S, Congedo, M, Ridder, D (2013) Pinpointing a highly specific pathological functional connection that turns phantom sound into distress. Cereb Cortex.
    74. Vanneste, S, Fregni, F, Ridder, D (2013) Head-to-head comparison of transcranial random noise stimulation, transcranial AC stimulation, and transcranial DC stimulation for tinnitus. Front Psychiatry 4: pp. 158 CrossRef
    75. Stein, A, Sarnthein, J (2000) Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 38: pp. 301-313 CrossRef
    76. Weisz, N, Muller, S, Schlee, W, Dohrmann, K, Hartmann, T, Elbert, T (2007) The neural code of auditory phantom perception. J Neurosci 27: pp. 1479-1484 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Neurology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1106
文摘
Tinnitus is the sensation of a ringing, buzzing, roaring or hissing sound in the absence of an external sound. As tinnitus has been related to hyperactivity and synaptic plasticity changes in the central auditory system, invasive and noninvasive neuromodulation methods have been used to interfere with this underlying mechanism to reduce tinnitus loudness and distress. Recently, transcranial random noise stimulation applied over the auditory cortex induced a more pronounced effect on tinnitus loudness than transcranial direct current and alternating current stimulation. We performed tRNS over the temporoparietal cortex in 154 patients with non-pulsatile tinnitus. A total of 119 patients received low-frequency tRNS (lf-tRNS), 19 high-frequency tRNS (hf-tRNS) and 16 whole frequency spectrum tRNS (wf-tRNS). The effect was evaluated by using the numeric rating scale loudness and distress pre- and post-stimulation. This study revealed a significant reduction in tinnitus loudness when lf-tRNS and hf-tRNS were applied as well as a reduction in tinnitus-related distress with lf-tRNS. Moreover, we observed a significantly more pronounced reduction in loudness and distress in pure tone (PT) tinnitus compared to narrow band noise (NBN) tinnitus when hf-tRNS was applied, a difference that could not be obtained with lf-tRNS. Based on these results, tRNS might be a promising treatment option for non-pulsatile tinnitus; however, we cannot yet provide a clear mechanistic explanation for the different results obtained with different types of stimulation, i.e., lf-tRNS, hf-tRNS and wf-tRNS, or with different types of tinnitus, i.e., PT and NBN tinnitus.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700