Arsenic and fluorine in the Etnean volcanics from Biancavilla, Sicily, Italy: environmental implications
详细信息    查看全文
  • 作者:S. Mazziotti-Tagliani (1) simona.mazziotti@uniroma1.it
    M. Angelone (2)
    G. Armiento (2)
    R. Pacifico (2)
    C. Cremisini (2)
    A. Gianfagna (1)
  • 关键词:Arsenic – ; Fluorine – ; Apatite ; (CaF) – ; Environmental mineralogy and geochemistry – ; Mount Etna
  • 刊名:Environmental Earth Sciences
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:66
  • 期:2
  • 页码:561-572
  • 全文大小:679.8 KB
  • 参考文献:1. Aiuppa A, D’Alessandro W, Federico C, Valenza M (2001) The abundance and speciation of arsenic in groundwaters from volcanic areas: data from Etna, Vesuvius and Vulcano Island. In: Cidu R (ed) Proceedings of 10th International symposium water–rock interaction: Villasimius, Italy, 10–15 July, pp 957–960
    2. Aiuppa A, Bellomo S, Brusca L, D’Alessandro W, Federico C (2003a) Natural and anthropogenic factors affecting groundwater quality of an active volcano (Mt. Etna, Italy). Appl Geochem 18:863–882. doi:
    3. Aiuppa A, D’Alessandro W, Federico C, Palumbo B, Valenza M (2003b) The aquatic geochemistry of arsenic in volcanic groundwaters from southern Italy. Appl Geochem 18:1283–1296. doi:
    4. Aksoy N, Simsek C, Gunduz O (2009) Groundwater contamination mechanism in a geothermal field: a case study of Balcova, Turkey. J Contam Hydrol 103(1–2):13–28. doi:
    5. Bellomo S, Aiuppa A, D’Alessandro W, Parello F (2007) Environmental impact of magmatic fluorine emission in the Mt. Etna area. J Volcanol Geotherm Res 165:87–101. doi:
    6. Bruni BM, Pacella A, Mazziotti-Tagliani S, Gianfagna A, Paoletti L (2006) Nature and extent of the exposure to fibrous amphiboles in Biancavilla. Sci Total Environ 370:9–16. doi:
    7. Burragato F, Comba P, Baiocchi V, Palladino DM, Simei S, Gianfagna A, Paoletti L, Pasetto R (2005) Geo-volcanological, mineralogical and environmental aspects of quarry materials related to pleural neoplasm in the area of Biancavilla, Mount Etna (Eastern Sicily, Italy). Environ Geol 47(6):855–868. doi:
    8. Cardile V, Lombardo L, Belluso E, Panico A, Renis M, Gianfagna A, Balazy M (2007) Fluoro-edenite Fibers induce expression of Hsp70 and inflammatory response. Int J Environ Res Pub Health 4(3):195–202. doi:
    9. Charlet L, Polya DA (2006) Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster. Elements 2(2):91–96. doi:
    10. Comba P, Gianfagna A, Paoletti L (2003) The pleural mesothelioma cases in Biancavilla are related to the new fluoro-edenite fibrous amphibole. Arch Environ Health 58:229–232. doi:
    11. Cremisini C, Dall’Aglio M, Ghiara E (1979) Arsenic in Italian rivers and in some cold and thermal spring. In: Proceedings of International conference on management and control of heavy metals in the environment. Imperial College, London, pp 341–344
    12. Dixit S, Hering JG (2003) Comparison of Arsenic(V) and Arsenic(III) sorption onto iron oxide minerals: implication for Arsenic mobility. Environ Sci Technol 37:4182–4189. doi:
    13. Dold B (2003) Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. J Geochem Explor 80:55–68. doi:
    14. D. Lgs n. 152 (2006) Norme in materia ambientale. Supplemento ordinario n. 96, Gazzetta Ufficiale 14 aprile 2006 n. 88
    15. Giammanco S, Ottaviani M, Valenza M, Veschetti E, Principio E, Giammanco G, Pignato S (1998) Major and trace elements geochemistry in the ground waters of a volcanic area: Mount Etna (Sicily). Water Res 32:19–30. doi:
    16. Gianfagna A, Mazziotti-Tagliani S (2009) F-As-Ca-phosphates from Biancavilla (CT), Italy. Geoitalia2009 VII Forum FIST, Rimini 9–11 settembre 2009, Epitome 3, p 435
    17. Gianfagna A, Oberti R (2001) Fluoro-edenite from Biancavilla (Catania, Sicily, Italy): crystal chemistry of a new amphibole end-member. Am Mineral 86:1489–1493
    18. Gianfagna A, Ballirano P, Bellatreccia F, Bruni BM, Paoletti L, Oberti R (2003) Characterisation of amphibole fibres linked to mesothelioma in the area of Biancavilla, Eastern Sicily, Italy. Mineral Mag 67:1221–1229. doi:
    19. Gianfagna A, Andreozzi GB, Ballirano P, Mazziotti-Tagliani S, Bruni BM (2007a) Structural and chemical contrasts between prismatic and fibrous fluoro-edenite from Biancavilla, Sicily, Italy. Can Mineral 45:249–262. doi:
    20. Gianfagna A, Scordari F, Mazziotti-Tagliani S, Ventruti G (2007b) Fluoro-phlogopite from Biancavilla (Mt Etna, Sicily, Italy): crystal chemistry of a new F-dominant analogue of phlogopite. Am Mineral 92:1601–1609. doi:
    21. Hughes JM, Cameron M, Crowley KD (1989) Structural variations in natural F, OH, and Cl apatites. Am Mineral 74:870–876
    22. I.G.M. (ed) (1969) Topographic Maps published in 1969 (scale 1.25000, Adrano F掳169, I, N.E.)
    23. Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin, p 550
    24. Lahermo P, Sandstr枚m H, Malisa E (1991) The occurrence and geochemistry of fluorides in natural waters in Finland and East Africa with reference to their geomedical implications. J Geochem Explor 41(1–2):65–79. doi:
    25. Lan D, Wu D, Li P, Wang T, Chen C, Wang W (2008) Influence of high-fluorine environmental background on crops and human health in hot spring-type fluorosis-diseased areas. Chin J Geochem 27:335–341. doi:
    26. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235. doi:
    27. Mazziotti-Tagliani S (2006) Caratteri minero-genetici degli anfiboli fibrosi di interesse ambientale presenti nell’area di Biancavilla (CT, Italia). Dissertation, Earth Science Department, Sapienza University of Rome
    28. Mazziotti-Tagliani S (2007) Mineralogical, genetic and environmental aspects of the fluorine-rich amphiboles from Biancavilla (Mt. Etna, Sicily, Italy). PLINIUS Suppl EJM 33:169–174
    29. Mazziotti-Tagliani S, Pacifico R, Crovato C, Gianfagna A (2009) Arsenic and fluorine in the Etnean volcanics from Biancavilla (Sicily, Italy): a preliminary study of environmental interest. Geoitalia2009 VII Forum FIST, Rimini 9–11 settembre 2009, Epitome 3, p 99
    30. National Research Council (1999) Arsenic in drinking waters. National Academic Press, Washington
    31. Nimick DA, Moore JN, Dalby CE, Savka MW (1998) The fate of geothermal arsenic in the Madison and Missouri rivers, Montana and Wyoming. Water Resour Res 34:3051–3067. doi:
    32. Pacifico R, Adamo P, Cremisini C, Spaziani F, Ferrara L (2007) A geochemical analytical approach for the evaluation of heavy metal distribution in lagoon sediments. J Soils Sediments 7(5):313–325. doi:
    33. Paoletti L, Batisti D, Bruno C, Di Paola M, Gianfagna A, Mastrantonio M, Nesti M, Comba P (2000) Unusually high incidence of malignant pleural mesothelioma in a town of the eastern Sicily: an epidemiological and environmental study. Arch Environ Health 55(6):392–398
    34. Piscopo V, Angelone M, Spaziani F, Proposito M, Cremisini C (2009) Influence of hydrostratigraphy and structural setting on the arsenic occurence in groundwater of the Cimino-Vico volcanic area (Central Italy). Hydrogeol J 17(4):901–914. doi:
    35. Rahman MM, Naidu R, Bhattacharya P (2009) Arsenic contamination in groundwater in the Southeast Asia region. Environ Geochem Health 31:9–21. doi:
    36. Rango T, Bianchini G, Beccaluva L, Ayenew T, Colombani N (2009) Hydrogeochemical study in the Main Ethiopian Rift: new insights to the source and enrichment mechanism of fluoride. Environ Geol 58(1):109–118. doi:
    37. Rauret G, L贸pez-S谩nchez JF, Sahuquillo A, Barahona E, Lachica A, Ure AM, Davidson CM, Gomez A, L眉ck D, Bacon J, Yli-Halla H, Muntau H, Quevauiller PH (2000) Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by three-year stability study of acetic acid and EDTA extractable metal content. J Environ Monit 2:228–233. doi:
    38. Reimann C, Matschullat J, Birke M et al (2009) Arsenic distribution in the environment: the effects of scale. Appl Geochem 24(7):1147–1167. doi:
    39. Sadiq M (1997) Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Pollut 93(1–4):117–136. doi:10.1007/BF02404751
    40. Slotnick MJ, Meliker JR, Nriagu JO (2006) Effects of time and point-of-use devices on arsenic levels in South-eastern Michigan drinking water, USA. Sci Total Environ 369(1–3):42–50. doi:10.1016/j.scitotenv.2006.04.021
    41. Soffritti M, Minardi F, Bua L, Degli Esposti D, Belpoggi F (2004) First experimental evidence of peritoneal and pleural mesotheliomas induced by fluro-edenite fibres in Etnean volcanic material from Biancavilla (Sicily, Italy). Eur J Onc 9:169–175
    42. Stauffer RE, Thompson JM (1984) Arsenic and antimony in geothermal waters of Yellowstone national park, Wyoming, USA. Geochim Cosmochim Acta 48:2547–2561. doi:
    43. Stecher O (1998) Fluorine geochemistry in volcanic rock series: examples from Iceland and Jan Mayen. Geochim Cosmochim Acta 62(18):3117–3130. doi:
    44. Ure A, Davidson CM (2002) Chemical speciation in the environment. Blackwell, Oxford, p 452
    45. Wang S, Mulligan CN (2008) Speciation and surface structures of inorganic arsenic solid phases: a review. Environ Int 34:867–879. doi:
    46. Welch AH, Lico MS, Hughes JL (1988) Arsenic in groundwaters of the Western United States. Ground Water 26:333–347. doi:
    47. WHO (1984) Fluorine and fluorides, environmental health criteria, vol 36. World Health Organization, Geneva
    48. WHO (2008) Guidelines for drinking-water quality [electronic resource]: incorporating 1st and 2nd addenda, vol 1, Recommendations, 3rd edn. ISBN 978 92 4 154761 1 (WEB version), World Health Organization, Geneva
    49. Yokoyama T, Takahashi Y, Tarutani T (1993) Simultaneous determination of arsenic and arsenious acids in geothermal water. Chem Geol 103:103–111. doi:
    50. Yoshida T, Yamauchi H, Sun GF (2004) Chronic health effects in people exposed to arsenic via the drinking water: dose-response relationships in review. Toxicol Appl Pharm 198(3):243–252. doi:
    51. Zhang H, Selim HM (2008) Reaction and transport of arsenic in soils: equilibrium and kinetic modeling. Adv Agron 98:45–115. doi:
  • 作者单位:1. Dipartimento di Scienze della Terra, Sapienza Universit脿 di Roma, P.le A. Moro, 5, 00185 Rome, Italy2. ENEA, National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese, 301, 00123 Rome, Italy
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
Mineralogical and geochemical studies were undertaken in the volcanic area of Biancavilla (Catania, Italy) with the aim of explaining the nature of the high As and F contents of the area’s rocks. As and F contents in soils and groundwater were also investigated. The metasomatised benmoreite lavas show fluorine and arsenic concentrations up to about 3,000 and 1,000 mg/kg, respectively. Mineralogical analyses show that fluorine occurs mostly in fluoro-edenite and apatite-(CaF) crystals, both abundantly present in the altered rocks, while As is exclusively attributed to the apatite-(CaF) crystals. Specifically, arsenic was observed only at the borders of these apatite crystals. Leaching tests and sequential extraction procedures were carried out to evaluate the potential remobilisation of As and F by the mineral phases and the eventual risks induced by their spreading. The results of the leaching tests suggest that As is almost totally associated with the ‘easily reducible’ fraction and that it is released by the preferential dissolution of the arsenic enriched rims of apatite-(CaF) crystals. In soils, As concentration is relatively low (about 15 mg/kg, on average), while F ranges from 236 to 683 mg/kg. The underground waters supplying the town of Biancavilla show As and F contents lower than the allowed limits for drinking water, (As:10 μg/L, F:1–1.5 mg/L). The limited distribution of these rocks and the relatively limited mobilisation by the minerals both contribute to maintain low As and F values, in soils and groundwaters, despite the high values in metasomatised lava samples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700