Replacing a suite of commercial pectinases with a single enzyme, pectate lyase B, in Saccharomyces cerevisiae fermentations of cull peaches
详细信息    查看全文
  • 作者:M. C. Edwards (1)
    T. Williams (1)
    S. Pattathil (2) (3)
    M. G. Hahn (2) (3) (4)
    J. Doran-Peterson (1)
  • 关键词:Saccharomyces cerevisiae ; PelB ; Glycome profile ; Ethanol
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:41
  • 期:4
  • 页码:679-686
  • 全文大小:899 KB
  • 参考文献:1. Baron-Epel O, Gharyal PK, Schindler M (1988) Pectins as mediators of wall porosity in soybean cells. Planta 175:389-95 CrossRef
    2. Boland WE, Henriksen ED, Doran-Peterson J (2010) Characterization of two / Paenibacillus amylolyticus strain 27 C64 pectate lyases with activity on highly methylated pectin. Appl Environ Microbiol 76(17):6006-009. doi:10.1128/AEM.00043-10 CrossRef
    3. Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-54 CrossRef
    4. Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carb Res 344(14):1879-900. doi:10.1016/j.carres.2009.05.021 CrossRef
    5. Collmer A, Ried JL, Mount MS (1988) Assay methods for pectic enzymes. In: Wood WA, Kellogg ST (eds) Methods in enzymology, vol 161., Academic Press IncSan Diego, CA, pp 329-35
    6. Doran-Peterson J, Jangid A, Brandon SK, DeCrescenzo-Henriksen E, Dien B, Ingram LO (2009) Simultaneous saccharification and fermentation and partial saccharification and co-fermentation of lignocellulosic biomass for ethanol production. Meth Mol Biol 581:263-80. doi:10.1007/978-1-60761-214-8_17 CrossRef
    7. Dubois M, Gilles DA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for the determination of sugars and related substances. Anal Chem 28:350-56 CrossRef
    8. Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Inhibition of / Trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 36(3):275-87. doi:10.1002/bit.260360310 CrossRef
    9. Knox JP, Linstead PJ, Peart J, Cooper C, Roberts K (1991) Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant J 1(3):317-26. doi:10.1046/j.1365-313X.1991.t01-9-00999.x CrossRef
    10. Knox JP, Peart J, Neill SJ (1995) Identification of novel cell surface epitopes using a leaf epidermal-strip assay system. Planta 196:266-70
    11. Lesiecki M, Bialas W, Lewandowicz G (2012) Enzymatic hydrolysis of potato pulp. Acta Sci Pol Technol Aliment 11(1):53-9
    12. Marcus SE, Blake AW, Benians TA, Lee KJ, Poyser C, Donaldson L, Leroux O, Rogowski A, Petersen HL, Boraston A, Gilbert HJ, Willats WG, Knox JP (2010) Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant J 64(2):191-03. doi:10.1111/j.1365-313X.2010.04319.x CrossRef
    13. Marcus SE, Verhertbruggen Y, Herve C, Ordaz-Ortiz JJ, Farkas V, Pedersen HL, Willats WG, Knox JP (2008) Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol 8:60-1. doi:10.1186/1471-2229-8-60 CrossRef
    14. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC (2005) Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem 339(1):69-2. doi:10.1016/j.ab.2004.12.001 CrossRef
    15. Pakarinen A, Zhang J, Brock T, Maijala P, Viikari L (2012) Enzymatic accessibility of fiber hemp is enhanced by enzymatic or chemical removal of pectin. Biores Technol 107:275-81. doi:10.1016/j.biortech.2011.12.101 CrossRef
    16. Pattathil S, Avci U, Baldwin D, Swennes AG, McGill JA, Popper Z, Bootten T, Albert A, Davis RH, Chennareddy C, Dong R, O’Shea B, Rossi R, Leoff C, Freshour G, Narra R, O’Neil M, York WS, Hahn MG (2010) A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol 153(2):514-25. doi:10.1104/pp.109.151985 CrossRef
    17. Pattathil S, Avci U, Miller JS, Hahn MG (2012) Immunological approaches to plant cell wall and biomass characterization: Glycome profiling. Meth Mol Biol 908:61-2. doi:10.1007/978-1-61779-956-3_6
    18. R Development Core Team, (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org
    19. Roberts DW, Hills DJ (1985) Enzyme pretreatment of peach solid wastes used for ethanol fermentation. Agric Waste 12:173-84 CrossRef
    20. Sandhu SK, Oberoi HS, Dhaliwal SS, Babbar N, Kaur U, Nanda D, Kumar D (2012) Ethanol production from Kinnow mandarin ( / Citrus reticulata) peels via simultaneous saccharification and fermentation using crude enzyme produced by / Aspergillus oryzae adn the thermotolerant / Pichia kudriavzevii strain. Ann Micro Biol 62:655-66 CrossRef
    21. Smallwood M, Beven A, Donovan N, Neill SJ, Peart J, Roberts K, Knox JP (1994) Localization of cell wall proteins in relation to the developmental anatomy of the carrot root apex. Plant J 5:237-46 CrossRef
    22. Soriano M, Blanco A, Diaz P, Pastor FI (2000) An unusual pectate lyase from a / Bacillus sp. with high activity on pectin: cloning and characterization. Microbiology 146(Pt 1):89-5
    23. Wang T, Zabotina O, Hong M (2012) Pectin-cellulose interactions in the Arabidopsis primary cell wall from 2D magic-angle-spinning solid-state nuclear magnetic resonance. Biochemistry 51:9846-856 CrossRef
    24. Wilkins MR, Widmer W, Grohmann K (2007) Simultaneous saccharification and fermentation of citrus peel waste by / S. cerevisiae to produce ethanol. Process Biochem 42:1614-619 CrossRef
  • 作者单位:M. C. Edwards (1)
    T. Williams (1)
    S. Pattathil (2) (3)
    M. G. Hahn (2) (3) (4)
    J. Doran-Peterson (1)

    1. Department of Microbiology, University of Georgia, Athens, GA, 30602, USA
    2. Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
    3. BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
    4. Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
  • ISSN:1476-5535
文摘
Fermentation of pectin-rich biomass with low concentrations of polysaccharides requires some treatment of the pectin, but does not need complete degradation of the polysaccharide to reach maximum ethanol yields. Cull peaches, whole rotten fruits that are not suitable for sale, contain high concentrations of glucose (27.7?% dw) and fructose (29.3?% dw) and low amounts of cellulose (2.8?% dw), hemicellulose (4.5?% dw) and pectin (5.6?% dw). Amounts of commercial saccharification enzymes, cellulase and cellobiase can be significantly decreased and commercial pectinase mixtures can be replaced completely with a single enzyme, pectate lyase (PelB), while maintaining ethanol yields above 90?% of the theoretical maximum. PelB does not completely degrade pectin; it only releases short chain oligogalacturonides. However, the activity of PelB is sufficient for the fermentation process, and its addition to fermentations without commercial pectinase increases ethanol production by ~12?%.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700