2-epi-5-epi-Valiolone synthase activity is essential for maintaining phycobilisome composition in the cyanobacterium Anabaena variabilis ATCC 29413 when grown in the p
详细信息    查看全文
  • 作者:Edward Spence (1)
    Samantha J. Bryan (2)
    Mohamed Lisfi (3)
    John Cullum (3)
    Walter C. Dunlap (1) (4)
    J. Malcolm Shick (5)
    Conrad W. Mullineaux (2)
    Paul F. Long (1) (6)
  • 关键词:Fructose ; Pentose phosphate pathway ; Phycobilisome ; Phycocyanin ; Mycosporine ; like amino acids ; Sedoheptulose 7 ; phosphate
  • 刊名:Photosynthesis Research
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:116
  • 期:1
  • 页码:33-43
  • 全文大小:693KB
  • 参考文献:1. Acharya K, Neupane B, Reppert M, Feng X, Jankowiak R (2010) On the unusual temperature-dependent emission of the CP47 antenna protein complex of photosystem II. J Phys Chem Lett 1(15):2310鈥?315 jz100560z">CrossRef
    2. Adams DG (2000) Heterocyst formation in cyanobacteria. Curr Opin Microbiol 3:618鈥?24 CrossRef
    3. Allen MM, Smith AJ (1969) Nitrogen chlorosis in blue-green algae. Arch Mikrobiol 69:114鈥?20 CrossRef
    4. Andrizhiyevskaya EG, Chojnicka A, Bautista JA, Diner BA, van Grondelle R, Dekker JP (2005) Origin of the F685 and F695 fluorescence in photosystem II. Photosynth Res 84:173鈥?80 CrossRef
    5. Asamizu S, Xie P, Brumsted CJ, Flatt PM, Mahmud T (2012) Evolutionary divergence of sedoheptulose 7-phosphate cyclases leads to several distinct cyclic products. J Am Chem Soc 134:12219鈥?2229 ja3041866">CrossRef
    6. Baier K, Lehmann H, Stephan DP, Lockau W (2004) NblA is essential for phycobilisome degradation in / Anabaena sp. strain PCC 7120 but not for development of functional heterocysts. Microbiology 150:2739鈥?749 CrossRef
    7. Balskus EP, Walsh CT (2010) The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329:1653鈥?656 CrossRef
    8. Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419鈥?35 jcb.58.2.419">CrossRef
    9. Collier JL, Grossman AR (1994) A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. EMBO J 13:1039鈥?047
    10. de Lorimier RM, Smith RL, Stevens SE (1992) Regulation of phycobilisome structure and gene expression by light intensity. Plant Physiol 98:1003鈥?010 CrossRef
    11. Dolganov N, Grossman AR (1999) A polypeptide with similarity to phycocyanin alpha-subunit phycocyanobilin lyase involved in degradation of phycobilisomes. J Bacteriol 181:610鈥?17
    12. Edwards U, Rogall T, Bl枚cker H, Emde M, B枚ttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843鈥?853 CrossRef
    13. Everroad C, Six C, Partensky F, Thomas JC, Holtzendorff J, Wood AM (2006) Biochemical bases of type IV chromatic adaptation in marine / Synechococcus spp. J Bacteriol 188:3345鈥?356 CrossRef
    14. Fujita Y, Murakami A, Aizawa K, Ohki K (1994) Short-term and long-term adaptation of the photosynthetic apparatus: homeostatic properties of thylakoids. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 677鈥?92 CrossRef
    15. Gantt E, Lipschultz CA, Grabowski J, Zimmerman BK (1979) Phycobilisomes from blue-green and red algae: isolation criteria and dissociation characteristics. Plant Physiol 63:615鈥?20 CrossRef
    16. Gates RD, Hoegh-Guldberg O, McFall-Ngai MJ, Bil KY, Muscatine L (1995) Free amino acids exhibit anthozoan 鈥渉ost factor鈥?activity: they induce the release of photosynthate from symbiotic dinoflagellates in vitro. Proc Natl Acad Sci USA 92:7430鈥?434 CrossRef
    17. Glazer AN (1985) Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem 14:47鈥?7 CrossRef
    18. Glazer AN, Lundell DJ, Yamanaka G, Williams RC (1983) The structure of a 鈥渟imple鈥?phycobilisome. Ann Microbiol (Paris) 134B:159鈥?80
    19. Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725鈥?49
    20. Grossman AR, Bhaya D, He Q (2001) Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting. J Biol Chem 276:11449鈥?1452 jbc.R100003200">CrossRef
    21. Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473鈥?03 CrossRef
    22. Kehoe DM, Gutu A (2006) Responding to color: the regulation of complementary chromatic adaptation. Annu Rev Plant Biol 57:127鈥?50 CrossRef
    23. MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311鈥?34 jsbi.1998.4062">CrossRef
    24. Mahmud T (2003) The C7N aminocyclitol family of natural products. Nat Prod Rep 20:137鈥?66 CrossRef
    25. Mannan RM, Pakrasi HB (1993) Dark heterotrophic growth conditions result in an increase in the content of photosystem II units in the filamentous cyanobacterium / Anabaena variabilis ATCC 29413. Plant Physiol 103:971鈥?77 CrossRef
    26. Niyogi KK (1999) Photoprotection revisted: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333鈥?59 CrossRef
    27. Paerl HW (1984) Cyanobacterial carotenoids: their roles in maintaining optimal photosynthetic production among aquatic bloom forming genera. Oceologia 61:143鈥?49 CrossRef
    28. Portwich A, Garcia-Pichel F (2003) Biosynthetic pathway of mycosporines (mycosporine-like amino acids) in the cyanobacterium / Chlorogloeopsis sp. strain PCC 6912. Phycologia 42:384鈥?92 CrossRef
    29. Rippka R, Deruelles J, Waterbury J, Herdman M, Stanier R (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1鈥?1 CrossRef
    30. Rosic NN (2012) Phylogenetic analysis of genes involved in mycosporine-like amino acid biosynthesis in symbiotic dinoflagellates. Appl Microbiol Biotechnol 94:29鈥?7 CrossRef
    31. Schwarz R, Grossman AR (1998) A response regulator of cyanobacteria integrates diverse environmental signals and is critical for survival under extreme conditions. Proc Natl Acad Sci USA 95:11008鈥?1013 CrossRef
    32. Sendersky E, Lahmi R, Shaltiel J, Perelman A, Schwarz R (2005) NblC, a novel component required for pigment degradation during starvation in / Synechococcus PCC 7942. Mol Microbiol 58:659鈥?68 j.1365-2958.2005.04844.x">CrossRef
    33. Shick JM, Dunlap WC (2002) Mycosporine-like amino acids and related gadusols: biosynthesis, acumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol 64:223鈥?62 CrossRef
    34. Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, Fujie M, Fujiwara M, Koyanagi R, Ikuta T, Fujiyama A, Miller DJ, Satoh N (2011) Using the / Acropora digitifera genome to understand coral responses to environmental change. Nature 476:320鈥?23 CrossRef
    35. Singh SP, Sinha RP, Daiker V, H盲der DP (2010) Quantitative and qualitative extraction of RNA from a filamentous cyanobacterium / Anabaena variabilis PCC 7937. J Appl Phycol 22:113鈥?16 CrossRef
    36. Smart LB, Anderson SL, McIntosh L (1991) Targeted genetic inactivation of the photosystem I reaction center in the cyanobacterium / Synechocystis sp. PCC 6803. EMBO J 10:3289鈥?296
    37. Spence E, Dunlap WC, Shick JM, Long PF (2012) Redundant pathways of sunscreen biosynthesis in a cyanobacterium. ChemBioChem 13:531鈥?33 CrossRef
    38. Starcevic A, Akthar S, Dunlap WC, Shick JM, Hranueli D, Cullum J, Long PF (2008) Enzymes of the shikimic acid pathway encoded in the genome of a basal metazoan, / Nematostella vectensis, have microbial origins. Proc Natl Acad Sci USA 105:2533鈥?537 CrossRef
    39. Tamary E, Kiss V, Nevo R, Adam Z, Bern谩t G, Rexroth S, R枚gner M, Reich Z (2012) Structural and functional alterations of cyanobacterial phycobilisomes induced by high-light stress. Biochim Biophys Acta 1817:319鈥?27 j.bbabio.2011.11.008">CrossRef
    40. van Waasbergen LG, Dolganov N, Grossman AR (2002) / nblS, a gene involved in controlling photosynthesis-related gene expression during high light and nutrient stress in / Synechococcus elongatus PCC 7942. J Bacteriol 84:2481鈥?490 CrossRef
    41. Vernotte C, Picaud M, Kirilovsky D, Olive J, Ajlani G, Astier C (1992) Changes in the photosynthetic apparatus in the cyanobacterium / Synechocystis sp. PCC 6714 following light-to-dark and dark-to-light transitions. Photosynth Res 32:45鈥?7 CrossRef
    42. Wilson A, Ajlani G, Verbavatz JM, Vass I, Kerfeld CA, Kirilovsky D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18(4):992鈥?007 CrossRef
    43. Wolk CP, Shaffer PW (1976) Heterotrophic micro- and macrocultures of a nitrogen-fixing cyanobacterium. Arch Microbiol 110:145鈥?47 CrossRef
    44. Wu X, Flatt PM, Schl枚rke O, Zeeck A, Dairi T, Mahmud T (2007) A comparative analysis of the sugar phosphate cyclase superfamily involved in primary and secondary metabolism. ChemBioChem 8:239鈥?48 CrossRef
  • 作者单位:Edward Spence (1)
    Samantha J. Bryan (2)
    Mohamed Lisfi (3)
    John Cullum (3)
    Walter C. Dunlap (1) (4)
    J. Malcolm Shick (5)
    Conrad W. Mullineaux (2)
    Paul F. Long (1) (6)

    1. Institute of Pharmaceutical Science, King鈥檚 College London, 150 Stamford Street, London, SE1 9NH, UK
    2. The School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
    3. Department of Genetics, University of Kaiserslautern, Postfach 3049, 67653, Kaiserslautern, Germany
    4. Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
    5. School of Marine Sciences, University of Maine, 5751, Murray Hall, Orono, ME, 04469-5751, USA
    6. Department of Chemistry, King鈥檚 College London, 150 Stamford Street, London, SE1 9NH, UK
  • ISSN:1573-5079
文摘
The cyclase 2-epi-5-epi-valiolone synthase (EVS) is reported to be a key enzyme for biosynthesis of the mycosporine-like amino acid shinorine in the cyanobacterium Anabaena variabilis ATCC 29413. Subsequently, we demonstrated that an in-frame complete deletion of the EVS gene had little effect on in vivo production of shinorine. Complete segregation of the EVS gene deletion mutant proved difficult and was achieved only when the mutant was grown in the dark and in a medium supplemented with fructose. The segregated mutant showed a striking colour change from native blue-green to pale yellow-green, corresponding to substantial loss of the photosynthetic pigment phycocyanin, as evinced by combinations of absorbance and emission spectra. Transcriptional analysis of the mutant grown in the presence of fructose under dark or light conditions revealed downregulation of the cpcA gene that encodes the alpha subunit of phycocyanin, whereas the gene encoding nblA, a protease chaperone essential for phycobilisome degradation, was not expressed. We propose that the substrate of EVS (sedoheptulose 7-phosphate) or possibly lack of its EVS-downstream products, represses transcription of cpcA to exert a hitherto unknown control over photosynthesis in this cyanobacterium. The significance of this finding is enhanced by phylogenetic analyses revealing horizontal gene transfer of the EVS gene of cyanobacteria to fungi and dinoflagellates. It is also conceivable that the EVS gene has been transferred from dinoflagellates, as evident in the host genome of symbiotic corals. A role of EVS in regulating sedoheptulose 7-phosphate concentrations in the photophysiology of coral symbiosis is yet to be determined.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700