Thermalization of strongly interacting bosons after spontaneous emissions in optical lattices
详细信息    查看全文
  • 作者:Johannes Schachenmayer ; Lode Pollet ; Matthias Troyer…
  • 关键词:thermalization ; optical lattices ; spontaneous emissions ; Bose ; Hubbard model
  • 刊名:EPJ Quantum Technology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:2
  • 期:1
  • 全文大小:872KB
  • 参考文献:1.Deutsch JM: Phys. Rev. A. 1991,43(4):2046. 10.1103/PhysRevA.43.2046CrossRef ADS MathSciNet
    2.Srednicki M: Phys. Rev. E. 1994, 50:888.CrossRef ADS
    3.Rigol M, Dunjko V, Olshanii M: Nature. 2008,452(7189):854. 10.1038/nature06838CrossRef ADS
    4.Cazalilla MA, Citro R, Giamarchi T, Orignac E, Rigol M: Rev. Mod. Phys.. 2011, 83:1405. 10.1103/RevModPhys.83.1405CrossRef ADS
    5.Rigol M, Srednicki M: Phys. Rev. Lett.. 2012., 108: Article ID 110601
    6.Kinoshita T, Wenger T, Weiss DS: Nature. 2006,440(7086):900. 10.1038/nature04693CrossRef ADS
    7.Rigol M: Phys. Rev. Lett.. 2009., 103: Article ID 100403
    8.Cassidy AC, Clark CW, Rigol M: Phys. Rev. Lett.. 2011., 106: Article ID 140405
    9.Rigol M, Fitzpatrick M: Phys. Rev. A. 2011., 84: Article ID 033640
    10.Bloch I, Dalibard J, Nascimbene S: Nat. Phys.. 2012,8(4):267. 10.1038/nphys2259CrossRef
    11.Cirac JI, Zoller P: Nat. Phys.. 2012,8(4):264. 10.1038/nphys2275CrossRef
    12.McKay DC, DeMarco B: Rep. Prog. Phys.. 2011.,74(5): Article ID 054401
    13.J枚rdens R, Tarruell L, Greif D, Uehlinger T, Strohmaier N, Moritz H, Esslinger T, De Leo L, Kollath C, Georges A, Scarola V, Pollet L, Burovski E, Kozik E, Troyer M: Phys. Rev. Lett.. 2010.,104(18): Article ID 180401
    14.Hofstetter W, Cirac JI, Zoller P, Demler E, Lukin MD: Phys. Rev. Lett.. 2002.,89(22): Article ID 220407
    15.Mathy CJM, Huse DA, Hulet RG: Phys. Rev. A. 2012., 86: Article ID 023606
    16.J枚rdens R, Strohmaier N, G眉nter K, Moritz H, Esslinger T: Nature (London). 2008,455(7210):204. 10.1038/nature07244CrossRef ADS
    17.Paiva T, Scalettar R, Randeria M, Trivedi N: Phys. Rev. Lett.. 2010., 104: Article ID 066406
    18.De Leo L, Bernier JS, Kollath C, Georges A, Scarola VW: Phys. Rev. A. 2011., 83: Article ID 023606
    19.Fuchs S, Gull E, Pollet L, Burovski E, Kozik E, Pruschke T, Troyer M: Phys. Rev. Lett.. 2011., 106: Article ID 030401
    20.Gerbier F, Castin Y: Phys. Rev. A. 2010., 82: Article ID 013615
    21.Pichler H, Daley AJ, Zoller P: Phys. Rev. A. 2010.,82(6): Article ID 063605
    22.Gordon JP, Ashkin A: Phys. Rev. A. 1980, 21:1606. 10.1103/PhysRevA.21.1606CrossRef ADS
    23.Dalibard J, Cohen-Tannoudji C: J. Phys. B, At. Mol. Opt. Phys.. 1985,18(8):1661. 10.1088/0022-3700/18/8/019CrossRef ADS MathSciNet
    24.Schachenmayer J, Pollet L, Troyer M, Daley AJ: Phys. Rev. A. 2014.,89(1): Article ID 011601
    25.Poletti D, Bernier JS, Georges A, Kollath C: Phys. Rev. Lett.. 2012., 109: Article ID 045302
    26.Barmettler P, Poletti D, Cheneau M, Kollath C: Phys. Rev. A. 2012.,85(5): Article ID 053625
    27.Poletti D, Barmettler P, Georges A, Kollath C: Phys. Rev. Lett.. 2013., 111: Article ID 195301
    28.arXiv: 1405.鈥?404
    29.Bernier JS, Barmettler P, Poletti D, Kollath C: Phys. Rev. A. 2013., 87: Article ID 063608
    30.Sarkar S, Langer S, Schachenmayer J, Daley AJ: Phys. Rev. A. 2014.,90(2): Article ID 023618
    31.arXiv: 1407.鈥?098
    32.Cheneau M, Barmettler P, Poletti D, Endres M, Schau脽 P, Fukuhara T, Gross C, Bloch I, Kollath C, Kuhr S: Nature. 2012,481(7382):484. 10.1038/nature10748CrossRef ADS
    33.Vidal G: Phys. Rev. Lett.. 2004.,93(4): Article ID 040502
    34.Daley AJ, Kollath C, Schollw枚ck U, Vidal G: J. Stat. Mech. Theory Exp.. 2004., 2004: Article ID P04005
    35.White SR, Feiguin AE: Phys. Rev. Lett.. 2004.,93(7): Article ID 076401
    36.Verstraete F, Murg V, Cirac JI: Adv. Phys.. 2008, 57:143. 10.1080/14789940801912366CrossRef ADS
    37.Sch枚nmeier-Kromer J, Pollet L: Phys. Rev. A. 2014., 89: Article ID 023605
    38.K眉hner TD, White SR, Monien H: Phys. Rev. B. 2000., 61: Article ID 12474
    39.Daley AJ: Adv. Phys.. 2014,63(2):77. 10.1080/00018732.2014.933502CrossRef ADS
    40.M酶lmer K, Castin Y, Dalibard J: J. Opt. Soc. Am. B. 1993,10(3):524. 10.1364/JOSAB.10.000524CrossRef ADS
    41.Gardiner CW, Zoller P: Quantum Noise. Springer, Berlin; 2005.
    42.Carmichael HJ: An Open Systems Approach to Quantum Optics. Springer, Berlin; 1993.MATH
    43.Linden N, Popescu S, Short AJ, Winter A: Phys. Rev. E. 2009.,79(6): Article ID 061103
    44.Rigol M, Muramatsu A: Phys. Rev. A. 2004.,70(3): Article ID 031603
    45.Jordan P, Wigner E: Z. Phys.. 1928, 47:631. 10.1007/BF01331938CrossRef ADS MATH
  • 作者单位:Johannes Schachenmayer (1)
    Lode Pollet (2)
    Matthias Troyer (3)
    Andrew J Daley (4) (5)

    1. Department of Physics, JILA, NIST, University of Colorado, 440 UCB, Boulder, CO, 80309, USA
    2. Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, University of Munich, Munich, 80333, Germany
    3. Theoretische Physik, ETH Zurich, Zurich, 8093, Switzerland
    4. Department of Physics and SUPA, University of Strathclyde, Glasgow, G4 0NG, UK
    5. Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, 15260, USA
  • 刊物类别:Quantum Physics; Quantum Information Technology, Spintronics; Nanotechnology and Microengineering;
  • 刊物主题:Quantum Physics; Quantum Information Technology, Spintronics; Nanotechnology and Microengineering;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2196-0763
文摘
We study the out-of-equilibrium dynamics of bosonic atoms in a 1D optical lattice, after the ground-state is excited by a single spontaneous emission event, i.e. after an absorption and re-emission of a lattice photon. This is an important fundamental source of decoherence for current experiments, and understanding the resulting dynamics and changes in the many-body state is important for controlling heating in quantum simulators. Previously it was found that in the superfluid regime, simple observables relax to values that can be described by a thermal distribution on experimental time-scales, and that this breaks down for strong interactions (in the Mott insulator regime). Here we expand on this result, investigating the relaxation of the momentum distribution as a function of time, and discussing the relationship to eigenstate thermalization. For the strongly interacting limit, we provide an analytical analysis for the behavior of the system, based on an effective low-energy Hamiltonian in which the dynamics can be understood based on correlated doublon-holon pairs. Keywords thermalization optical lattices spontaneous emissions Bose-Hubbard model

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700