Propagation of quantum correlations after a quench in the Mott-insulator regime of the Bose-Hubbard model
详细信息    查看全文
  • 作者:Konstantin V Krutitsky ; Patrick Navez ; Friedemann Queisser…
  • 关键词:Bose ; Hubbard model ; quantum correlations ; quench dynamics
  • 刊名:EPJ Quantum Technology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:1
  • 期:1
  • 全文大小:819KB
  • 参考文献:1.Vidal G: Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 2004., 93: Article ID 040502
    2.Verstraete F, Porras D, Cirac JI: Density matrix renormalization group and periodic boundary conditions: a聽quantum information perspective. Phys. Rev. Lett. 2004., 93: Article ID 227205
    3.Cirac JI, Verstraete F: Renormalization and tensor product states in spin chains and lattices. J. Phys. A, Math. Theor. 2009., 42: Article ID 504004
    4.Schollw枚ck U: The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 2011, 326:96鈥?92. 10.1016/j.aop.2010.09.012CrossRef MATH ADS
    5.Calabrese P, Cardy J: Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 2006., 96: Article ID 136801
    6.Calabrese P, Cardy J: Quantum quenches in extended systems. J. Stat. Mech. Theory Exp. 2007., 2007: Article ID P06008
    7.Kollath C, L盲uchli AM, Altman E: Quench dynamics and nonequilibrium phase diagram of the Bose-Hubbard model. Phys. Rev. Lett. 2007., 98: Article ID 180601
    8.Rigol M, Dunjko V, Yurovsky V, Olshanii M: Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys. Rev. Lett. 2007., 98: Article ID 050405
    9.Rigol M, Dunjko V, Olshanii M: Thermalization and its mechanism for generic isolated quantum systems. Nature (London) 2008, 452:854鈥?58. 10.1038/nature06838CrossRef ADS
    10.Eckstein M, Hackl A, Kehrein S, Kollar M, Moeckel M, Werner P, Wolf FA: New theoretical approaches for correlated systems in nonequilibrium. Eur. Phys. J. Spec. Top. 2009, 180:217鈥?35. 10.1140/epjst/e2010-01219-xCrossRef
    11.Moeckel M, Kehrein S: Real-time evolution for weak interaction quenches in quantum systems. Ann. Phys. 2009, 324:2146鈥?178. 10.1016/j.aop.2009.03.009CrossRef MATH ADS
    12.Cazalilla MA, Rigol M: Focus on dynamics and thermalization in isolated quantum many-body systems. New J. Phys. 2010., 12: Article ID 055006
    13.Polkovnikov A, Sengupta K, Silva A, Vengalattore M: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 2011, 83:863鈥?83. 10.1103/RevModPhys.83.863CrossRef ADS
    14.Rigol M: Dynamics and thermalization in correlated one-dimensional lattice systems. Cold Atoms Series 1. In Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics. Edited by: Proukakis NP, Gardiner SA, Davis MJ, Szymanska MH. Imperial College Press, London; 2013.
    15.Rigol M: Quantum quenches in the thermodynamic limit. Phys. Rev. Lett. 2014., 112: Article ID 170601
    16.Cramer M, Flesch A, McCulloch IP, Schollw枚ck U, Eisert J: Exploring local quantum many-body relaxation by atoms in optical superlattices. Phys. Rev. Lett. 2008., 101: Article ID 063001
    17.Flesch A, Cramer M, McCulloch IP, Schollw枚ck U, Eisert J: Probing local relaxation of cold atoms in optical superlattices. Phys. Rev. A 2008., 78: Article ID 033608
    18.L盲uchli AM, Kollath C: Spreading of correlations and entanglement after a quench in the one-dimensional Bose-Hubbard model. J. Stat. Mech. Theory Exp. 2008., 2008: Article ID P05018
    19.Bernier J-S, Poletti D, Barmettler P, Roux G, Kollath C: Slow quench dynamics of Mott-insulating regions in a trapped Bose gas. Phys. Rev. A 2012., 85: Article ID 033641
    20.Barmettler P, Poletti D, Cheneau M, Kollath C: Propagation front of correlations in an interacting Bose gas. Phys. Rev. A 2012., 85: Article ID 053625
    21.Natu SS, Mueller EJ: Dynamics of correlations in a dilute Bose gas following an interaction quench. Phys. Rev. A 2013., 87: Article ID 053607
    22.Natu SS, Mueller EJ: Dynamics of correlations in shallow optical lattices. Phys. Rev. A 2013., 87: Article ID 063616
    23.Deuar P, St贸binska M: Correlation waves after quantum quenches in one- to three-dimensional BECs. arXiv:1310.1301.
    24.Carleo G, Becca F, Sanchez-Palencia L, Sorella S, Fabrizio M: Light-cone effect and supersonic correlations in one- and two-dimensional bosonic superfluids. Phys. Rev. A 2014., 89: Article ID 031602(R)
    25.Bonnes L, Essler FHL, L盲uchli AM: 鈥楲ight-cone鈥?dynamics after quantum quenches in spin chains. arXiv:1404.4062.
    26.Bernier J-S, Citro R, Kollath C, Orignac E: Correlation dynamics during a slow interaction quench in a one-dimensional Bose gas. Phys. Rev. Lett. 2014., 112: Article ID 065301
    27.Chen D, White M, Borries C, DeMarco B: Quantum quench of an atomic Mott insulator. Phys. Rev. Lett. 2011., 106: Article ID 235304
    28.Cheneau M, Barmettler P, Poletti D, Endres M, Schau脽 P, Fukuhara T, Gross C, Bloch I, Kollath C, Kuhr S: Light-cone-like spreading of correlations in a quantum many-body system. Nature (London) 2012, 481:484鈥?87. 10.1038/nature10748CrossRef ADS
    29.Trotzky S, Chen Y-A, Flesch A, McCulloch IP, Schollw枚ck U, Eisert J, Bloch I: Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nat. Phys. 2012, 8:325鈥?30. 10.1038/nphys2232CrossRef
    30.Queisser F, Krutitsky KV, Navez P, Sch眉tzhold R: Equilibration and prethermalization in the Bose-Hubbard and Fermi-Hubbard models. Phys. Rev. A 2014., 89: Article ID 033616
    31.Navez P, Sch眉tzhold R: Emergence of coherence in the Mott-superfluid quench of the Bose-Hubbard model. Phys. Rev. A 2010., 82: Article ID 063603
    32.Queisser F, Navez P, Sch眉tzhold R: Sauter-Schwinger like tunneling in tilted Bose-Hubbard lattices in the Mott phase. Phys. Rev. A 2012., 85: Article ID 033625
    33.Queisser F, Navez P, Sch眉tzhold R: Universal frozen spectra after time-dependent symmetry restoring phase transitions. J. Phys. Condens. Matter 2013., 25: Article ID 404215
    34.Navez P, Queisser F, Sch眉tzhold R: Quasi-particle approach for lattice Hamiltonians with large coordination numbers. J. Phys. A, Math. Theor. 2014., 47: Article ID 225004
    35.Berges J, Bors谩nyi S, Wetterich C: Prethermalization. Phys. Rev. Lett. 2004., 93: Article ID 142002
    36.Kollar M, Wolf FA, Eckstein M: Generalized Gibbs ensemble prediction of prethermalization plateaus and their relation to nonthermal steady states in integrable systems. Phys. Rev. B 2011., 84: Article ID 054304
    37.Kitagawa T, Imambekov A, Schmiedmayer J, Demler E: The dynamics and prethermalization of one-dimensional quantum systems probed through the full distributions of quantum noise. New J. Phys. 2011., 13: Article ID 073018
    38.Birrell ND, Davies PCW: Quantum Fields in Curved Space. Cambridge University Press, Cambridge; 1984.MATH
    39.Sch眉tzhold R, Unruh WG: Cosmological particle creation in the lab? Lecture Notes in Physics 870. In Analogue Gravity Phenomenology: Analogue Spacetimes and Horizons, from Theory to Experiment. Edited by: Faccio D, Belgiorno F, Cacciatori S, Gorini V, Liberati S, Moschella U. Springer, New York; 2013:51鈥?1. [Lecture Notes in Physics, vol 870]CrossRef
  • 作者单位:Konstantin V Krutitsky (5)
    Patrick Navez (5)
    Friedemann Queisser (5) (6)
    Ralf Sch眉tzhold (5)

    5. Fakult盲t f眉r Physik, Universit盲t Duisburg-Essen, Lotharstrasse 1, Duisburg, 47057, Germany
    6. Department of Physics, University of British Columbia, 6224 Agricultural Road, Vancouver, V6T 1Z1, Canada
  • 刊物类别:Quantum Physics; Quantum Information Technology, Spintronics; Nanotechnology and Microengineering;
  • 刊物主题:Quantum Physics; Quantum Information Technology, Spintronics; Nanotechnology and Microengineering;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:2196-0763
文摘
We study a quantum quench in the Bose-Hubbard model where the tunneling rate J is suddenly switched from zero to a finite value in the Mott regime. In order to solve the many-body quantum dynamics far from equilibrium, we consider the reduced density matrices for a finite number of lattice sites and split them up into on-site density operators, i.e., the mean field, plus two-point and three-point correlations etc. Neglecting three-point and higher correlations, we are able to numerically simulate the time-evolution of the on-site density matrices and the two-point quantum correlations (e.g., their effective light-cone structure) for a comparably large number of lattice sites. Keywords Bose-Hubbard model quantum correlations quench dynamics

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700