用户名: 密码: 验证码:
Recent progress in all-solid-state quantum dot-sensitized TiO2 nanotube array solar cells
详细信息    查看全文
  • 作者:Qingyao Wang ; Chao Chen ; Wei Liu ; Shanmin Gao…
  • 关键词:Solar cells ; TiO2 nanotube arrays ; Quantum dots ; Hole transporting materials ; Counter electrodes ; Energy conversion
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:18
  • 期:1
  • 全文大小:2,104 KB
  • 参考文献:Albu SP, Roy P, Virtanen S, Schmuki P (2010) Self-organized TiO2 nanotube arrays: critical effects on morphology and growth. Isr J Chem 50:453–467CrossRef
    Baker DR, Kamat PV (2009) Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv Funct Mater 19:805–811CrossRef
    Bierman MJ, Jin S (2009) Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ Sci 2:1050–1059CrossRef
    Chalita R, Yuan T Jr, Balkus KJ (2009) Photocatalytic activity of PbS quantum dot/TiO2 nanotube composites. J Phys Chem C 113:10755–10760CrossRef
    Chang H, Tzeng W, Lin C, Cheng S (2011) Ionic compounds lamination reaction and characteristics of photosensitive copper indium sulfide on titania nanotube arrays. J. Alloys Compd 509:8700–8706CrossRef
    Chang L, Lunt RR, Brown PR, Bulovic V, Bawendi MG (2013a) Low-temperature solution-processed solar cells based on PbS colloidal quantum dot/CdS heterojunctions. Nano Lett 13:994–999CrossRef
    Chang W, Hsueh Y, Huang S, Liu K, Kei C, Perng T (2013b) Fabrication of Ag-loadedmulti-walled TiO2 nanotube arrays and their photocatalytic activity. J Mater Chem A 1:1987–1991CrossRef
    Chaudhuri RG, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433CrossRef
    Chen C, Ali G, Yoo SH, Kuma JM, Cho SO (2011a) Improved conversion efficiency of CdS quantum dot-sensitized TiO2 nanotube-arrays using CuInS2 as a co-sensitizer and an energy barrier layer. J Mater Chem 21:16430–16435CrossRef
    Chen G, Wang L, Zou Y, Sheng X, Liu H, Pi X, Yang D (2011b) CdSe quantum dots sensitized mesoporous TiO2 solar cells with CuSCN as solid-state electrolyte. J Nanomater 2011:269591
    Chen K, Feng X, Hu R, Li Y, Xie K, Li Y, Gu H (2013) Effect of Ag nanoparticle size on the photoelectrochemical properties of Ag decorated TiO2 nanotube arrays. J Alloys Compd 554:72–79CrossRef
    Cheng H, Zhao X, Sui X, Xiong Y, Zhao J (2011) Fabrication and characterization of CdS-sensitized TiO2 nanotube photoelectrode. J Nanopart Res 13:555–562CrossRef
    Cheng S, Fu W, Yang H, Zhang L, Ma J, Zhao H, Sun M, Yang L (2012) Photoelectrochemical performance of multiple semiconductors (CdS/CdSe/ZnS) co-sensitized TiO2 photoelectrodes. J Phys Chem C 116:2615–2621CrossRef
    Chi C, Chen P, Lee Y, Liu I, Chou S, Zhang X, Bach U (2011) Surface modifications of CdS/CdSe co-sensitized TiO2 photoelectrodes for solid-state quantum-dot-sensitized solar cells. J Mater Chem 21:17534–17540CrossRef
    Chu VH, Nghiem THL, Le TH, Vu DL, Tran HN, Vu TKL (2012) Synthesis and optical properties of water soluble CdSe/CdS quantum dots for biological applications. Adv Nat Sci 3:025017
    Chung I, Lee B, He J, Chang RPH, Kanatzidis MG (2012a) All-solid-state dye-sensitized solar cells with high efficiency. Nature 485:486–489CrossRef
    Chung I, Song JH, Im J, Androulakis J, Malliakas CD, Li H, Freeman AJ, Kenney JT, Kanatzidis MG (2012b) CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J Am Chem Soc 134:8579–8587CrossRef
    Dao VD, Kim SH, Choi HS, Kim JH, Park HO, Lee JK (2011) Efficiency enhancement of dye-sensitized solar cell using Pt hollow sphere counter electrode. J Phys Chem C 115:25529–25534CrossRef
    Gao X, Li H, Sun W, Chen Q, Tang F, Peng L (2009) CdTe quantum dots-sensitized TiO2 nanotube array photoelectrodes. J Phys Chem C 113:7531–7535CrossRef
    Guan X, Huang S, Zhang Q, Shen X, Sun H, Li D, Luo Y, Yu R, Meng Q (2011) Front-side illuminated CdS/CdSe quantum dots co-sensitized solar cells based on TiO2 nanotube arrays. Nanotechnology 22:465402CrossRef
    Hagfeldtt A, Grätzel M (1995) Light-induced redox reactions in nanocrys-talline systems. Chem Rev 95:49–68CrossRef
    Hossain MF, Biswas S, Zhang Z, Takahashi T (2011) Bubble-like CdSe nanoclusters sensitized TiO2 nanotube arrays for improvement in solar cell. J Photochem Photobiol A 217:68–75CrossRef
    Hsiao PT, Liou YJ, Teng H (2011) Electron transport patterns in TiO2 nanotube arrays based dye-sensitized solar cells under frontside and backside illuminations. J Phys Chem C 115:15018–15024CrossRef
    Huang D, Tian R, Zhao Y, Nie J, Cai X, Yao C (2010a) First-principles study of CuAlS2 for p-type transparent conductive materials. J Phys D Appl Phys 43:395405CrossRef
    Huang K, Wang Y, Dong R, Tsai W, Tsai K, Wang C, Chen Y, Vittal R, Lin J, Ho K (2010b) A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode. J Mater Chem 20:4067–4073CrossRef
    Huang L, Peng F, Wang H, Yu H, Geng W, Yang J, Zhang S, Zhao H (2011a) Controlled synthesis of octahedral Cu2O on TiO2 nanotube arrays by lectrochemical deposition. Mater Chem Phys 130:316–322CrossRef
    Huang Y, Sun L, Xie K, Lai Y, Liu B, Ren B, Lin C (2011b) SERS study of Ag nanoparticles electrodeposited on patterned TiO2 nanotube films. J Raman Spectrosc 42:986–991CrossRef
    Ip AH, Thon SM, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny LR, Carey GH, Fischer A, Kemp KW, Kramer IJ, Ning Z, Labelle AJ, Chou K, Amassian A, Sargent EH (2012) Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol 7:577–582CrossRef
    Joshi P, Zhang L, Chen Q, Galipeau D, Fong H, Qiao Q (2010) Electrospun carbon nanofibers as low-cost counter electrode for dye-sensitized solar cells. ACS Appl Mater Interfaces 2:3572–3577CrossRef
    Kamat PV (2008) Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753CrossRef
    Kang Q, Liu S, Yang L, Cai Q, Grimes CA (2011a) Fabrication of PbS nanoparticle-sensitized TiO2 nanotube arrays and their photoelectrochemical properties. ACS Appl Mater Interfaces 3:746–749CrossRef
    Kang Q, Liu S, Yang L, Cai Q, Grimes CA (2011b) Fabrication of PbS nanoparticle-sensitized TiO2 nanotube arrays and their photoelectrochemical properties. ACS Appl Mater Interfaces 3:746–749CrossRef
    Kang Q, Cai Q, Yao S, Grimes CA, Ye J (2012) Fabrication of Zn x Cd1−x Se nanocrystal-sensitized TiO2 nanotube arrays and their photoelectrochemical properties. J Phys Chem C 116:16885–16892CrossRef
    Kowalski D, Albu SP, Schmuki P (2013) Current dependent formation of PEDOT inverse nanotube arrays. RSC Adv. 3:2154–2157CrossRef
    Lai Y, Zhuang H, Xie K, Gong D, Tang Y, Sun L, Lin C, Chen Z (2010) Fabrication of uniform Ag/TiO2 nanotube array structures with enhanced photoelectrochemical performance. New J Chem 34:1335–1340CrossRef
    Lai Y, Lin Z, Zheng D, Chi L, Du R, Lin C (2012) CdSe/CdS quantum dots co-sensitized TiO2 nanotube array photoelectrode for highly efficient solar cells. Electrochim Acta 79:175–181CrossRef
    Lee YL, Lo YS (2009) Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater 19:604–609CrossRef
    Lee HJ, Leventis HC, Moon S, Chen P, Ito S, Haque SA, Torres T, Nüesch F, Geiger T, Zakeeruddin SM, Grätzel M, Nazeeruddin MK (2009a) PbS and CdS quantum dot-sensitized solid-state solar cells: old concepts, new results. Adv Funct Mater 19:2735–2742CrossRef
    Lee K, Chen P, Hsu C, Huang J, Ho W, Chen H, Ho K (2009b) A high-performance counter electrode based on poly (3, 4-alkylenedioxythiophene) for dye-sensitized solar cells. J Power Sources 188:313–318CrossRef
    Li P, Wu J, Lin J, Huang M, Huang Y, Li Q (2009) High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells. Sol Energy 83:845–849CrossRef
    Li J, Yang L, Luo S, Chen B, Li J, Lin H, Cai Q, Yao S (2010) Polycyclic aromatic hydrocarbon detection by electrochemiluminescence generating Ag/TiO2 nanotubes. Anal Chem 82:7357–7361CrossRef
    Li D, Chien C, Deora S, Chang P, Moulin E, Lu J (2011a) Prototype of a scalable core–shell Cu2O/TiO2 solar cell. Chem Phys Lett 501:446–450CrossRef
    Li L, Chen Y, Wu H, Wang NS, Diau Eric W (2011b) Detachment and transfer of ordered TiO2 nanotube arrays for front-illuminated dye-sensitized solar cells. Energy Environ Sci 4:3420–3425CrossRef
    Li X, Liu H, Luo D, Li J, Huang Y, Li H, Fang Y, Xu Y, Zhu L (2012) Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem Eng J 180:151–158CrossRef
    Li Z, Yu L, Liu Y, Sun S (2014) CdS/CdSe quantum dots co-sensitized TiO2 nanowire/nanotube solar cells with enhanced efficiency. Electrochim Acta 129:379–388CrossRef
    Li Z, Yu L, Liu Y, Sun S (2015) Efficient quantum dot-sensitized solar cell based on CdS x Se1−x /Mn–CdS/TiO2 nanotube array electrode. Electrochim Acta 153:200–209CrossRef
    Liang Y, Cui Z, Zhu S, Liu Y, Yang X (2011) Silver nanoparticles supported on TiO2 nanotubes as active catalysts for ethanol oxidation. J Catal 278:276–287CrossRef
    Liao J, Lin S, Li X, Li S, Cao X, Cao Y (2012) Fabrication of free-standing TiO2 nanotube membranes with through-hole morphology. Cryst Res Technol 47:731–737CrossRef
    Lim I, Yoon SJ, Lee W, Nah YC, Shrestha NK, Ahn H, Han SH (2012) Interfacially treated dye-sensitized solar cell with in situ photopolymerized iodine doped polythiophene. ACS Appl Mater Interfaces 4:838–841CrossRef
    Lin J, Liao J, Hung T (2011) A composite counter electrode of CoS/MWCNT with high electrocatalytic activity for dye-sensitized solar cells. Electrochem Commun 13:977–980CrossRef
    Liu Y, Zhang X, Liu R, Yang R, Liu C, Cai Q (2011) Fabrication and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst ZnTe/TiO2 nanotube arrays. J Solid State Chem 184:684–689CrossRef
    Liu G, Wang K, Nils H, Henrik J (2012a) Progress on free-standing and flow-through TiO2 nanotube membranes. Sol Energy Mater Sol Cells 98:24–38CrossRef
    Liu X, Jiang Y, Lan X, Zhang Y, Liu C, Li J, Wang B, Yu Y, Wang W (2012b) Improved efficiency of hybrid solar cell based on thiols-passivated CdS quantum dots and poly(3-hexythiophene). Phys Status Solidi (a) 209:1583–1587CrossRef
    Macak JM, Schmidt-Stein F, Schmuki P (2007) Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochem Commun 9:1783–1787CrossRef
    Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells 90:2011–2075CrossRef
    Nevins JS, Coughlin KM, Watson DF (2011) Attachment of CdSe nanoparticles to TiO2 via aqueous linker-assisted assembly: influence of molecular linkers on electronic properties and interfacial electron transfer. ACS Appl Mater Interfaces 3:4242–4253CrossRef
    Nguyen D, Ito S, Inoue M, Yusa S (2012) Superstrate CuInSe2-printed solar cells on In2S3/TiO2/FTO/glass plates. Energy Sci Technol 3:10–17
    Paramasivam I, Macak JM, Ghicov A, Schmuki P (2007) Enhanced photochromism of Ag loaded self-organized TiO2 nanotube layers. Chem Phys Lett 445:233–237CrossRef
    Qiao J, Wang Q, Xiao Y (2014) High-efficiency photoelectrochemical performance of PbS nanoparticles sensitized TiO2 nanotube arrays. J Appl Electrochem 44:1007–1011CrossRef
    Radich JG, Dwyer R, Kamat PV (2011) Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. Overcoming the redox limitations of S2−/S n 2− at the counter electrode. J Phys Chem Lett 2:2453–2460CrossRef
    Ratanatawanate C, Xiong C Jr, Balkus KJ (2008) Fabrication of PbS quantum dot doped TiO2 nanotubes. ACS Nano 2:1682–1688CrossRef
    Roy P, Kim D, Paramasivam I, Schmuki P (2009) Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles. Electrochem Commun 11:1001–1004CrossRef
    Ruby MAE, Sohrab R (2011) Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. Energy Environ Sci 4:1065–1086CrossRef
    Schaller RD, Klimov VI (2004) High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett 92:186601CrossRef
    Shankar K, Mor GK, Prakasam HE, Varghese OK, Grimes CA (2007) Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. Langmuir 23:12445–12449CrossRef
    Shin K, Seok S, Im SH, Park JH (2010) CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells. Chem Commun 46:2385–2387CrossRef
    Si H, Sun Z, Zhang H (2008) Photoelectrochemical response from CdSe-sensitized anodic oxidation TiO2 nanotubes. Colloids Surf 313:604–607CrossRef
    Smith YR, Sarma B, Mohanty SK, Misra M (2012) Light-assisted anodized TiO2 nanotube arrays. ACS Appl Mater Interfaces 4:5883–5890CrossRef
    Speirs MJ, Balazs DM, Fang HH, Lai LH, Protesescu L, Kovalenko MV, Loi MA (2015) Origin of the increased open circuit voltage in PbS–CdS core–shell quantum dot solar cells. J Mater Chem A 3:1450–1457CrossRef
    Su Z, Zhou W (2011) Formation, morphology control and applications of anodic TiO2 nanotube arrays. J Mater Chem 21:8955–8970CrossRef
    Sun W, Yu Y, Pan H, Gao X, Chen Q, Peng L (2008) CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc 130:1124–1125CrossRef
    Sun H, Luo Y, Zhang Y, Li D, Yu Z, Li K, Meng Q (2010) In situ preparation of a flexible polyaniline/carbon composite counter electrode and its application in dye-sensitized solar cells. J Phys Chem C 114:11673–11679CrossRef
    Tachan Z, Shalom M, Hod I, Ruhle S, Tirosh S, Zaban A (2011) PbS as a highly catalytic counter electrode for polysulfide-based quantum dot solar cells. J Phys Chem C 115:6162–6166CrossRef
    Tvrdy K, Frantsuzov PA, Kamat PV (2012) Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. PNAS 108:29–34CrossRef
    Wang H, Hu Y (2012) Graphene as a counter electrode material for dye-sensitized solar cells. Energy Environ Sci 5:8182–8188CrossRef
    Wang J, Lin Z (2009) Anodic formation of ordered TiO2 nanotube arrays: effects of electrolyte temperature and anodization potential. J Phys Chem C 113:4026–4030CrossRef
    Wang G, Lin R, Lin Y, Li X, Zhou X, Xiao X (2005) A novel high-performance counter electrode for dye-sensitized solar cells. Electrochim Acta 50:5546–5552CrossRef
    Wang Q, Yang X, Liu D, Chi L, Hou J (2012a) Ag and CdS nanoparticles co-sensitized TiO2 nanotubes for enhancing visible photoelectrochemical performance. Electrochim Acta 83:140–145CrossRef
    Wang Q, Yang X, Liu D, Zhao J (2012b) Fabrication, characterization and photocatalytic properties of Ag nanoparticles modified TiO2 NTs. J Alloys Compd 527:106–111CrossRef
    Wang W, An W, Ramalingam B, Mukherjee S, Niedzwiedzki DM, Gangopadhyay S, Biswas P (2012c) Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J Am Chem Soc 134:11276–11281CrossRef
    Wang J, Mora-Sero I, Pan Z, Zhao K, Zhang H, Feng Y, Yang G, Zhong X, Bisquert J (2013a) Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J Am Chem Soc 135:15913–15922CrossRef
    Wang Q, Yang X, Chi L, Cui M (2013b) Photoelectrochemical performance of CdTe sensitized TiO2 nanotube array photoelectrodes. Electrochim Acta 91:330–336CrossRef
    Wang Q, Li S, Qiao J, Jin R, Yu Y, Gao S (2015) CdS-CdSe (CdTe) core-shell quantum dots sensitized TiO2 nanotube array solar cells. Sol Energy Mater Sol Cells 132:650–654CrossRef
    Wen H, Liu Z, Yang Q, Li Y, Yu J (2011) Synthesis and electrochemical properties of CeO2 nanoparticle modified TiO2 nanotube arrays. Electrochim Acta 56:2914–2918CrossRef
    Xie K, Sun L, Wang C, Lai Y, Wang M, Chen H, Lin C (2010a) Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochim Acta 55:7211–7218CrossRef
    Xie Y, Ali G, Yoo SH, Cho SO (2010b) Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity. ACS Appl Mater Interfaces 2:2910–2914CrossRef
    Xie H, Que W, He Z, Zhong P, Liao Y, Wang G (2013) Preparation and photocatalytic activities of Sb2S3/TiO2 nanotube coaxial heterogeneous structure arrays via an ion exchange adsorption method. J Alloys Compd 550:314–319CrossRef
    Xu J, Yang X, Yang Q, Wong T, Lee C (2012a) Cu2ZnSnS4 hierarchical microspheres as an effective counter electrode material for quantum dot sensitized solar cells. J Phys Chem C 116:19718–19723CrossRef
    Xu J, Yang X, Wong T, Lee C (2012b) Large-scale synthesis of Cu2SnS3 and Cu1.8S hierarchical microspheres as efficient counter electrode materials for quantum dot sensitized solar cells. Nanoscale 4:6537–6542CrossRef
    Yang SY, Choi W, Park H (2015) TiO2 nanotube array photoelectrocatalyst and Ni–Sb–SnO2 electrocatalyst bifacial electrodes: a new type of bifunctional hybrid platform for water treatment. ACS Appl Mater Interfaces 7:1907–1914CrossRef
    Zeng T, Gladwin E, Claus RO (2003) Self-assembled InP quantum dot-TiO2 solid grätzel solar cell. MRS Proceedings 764
    Zhang H, Quan X, Chen S, Yu H, Ma N (2009) “Mulberry-like” CdSe nanoclusters anchored on TiO2 nanotube arrays: a novel architecture with remarkable photoelectrochemical performance. Chem Mater 21:3090–3095CrossRef
    Zhang S, Zhang S, Peng F, Zhang H, Liu H, Zhao H (2011) Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance. Electrochem Commun 13:861–864CrossRef
    Zhang Z, Zhang L, Hedhili MN, Zhang H, Wang P (2013) Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett 13:14–20CrossRef
    Zheng Q, Kang H, Yun J, Lee J, Park JH, Baik S (2011) Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells. ACS Nano 5:5088–5093CrossRef
    Zhong J, Wang Q, Xu X (2014) Photodeposition of CdS nanoparticles sensitized TiO2 nanotube arrays for enhanced photoelectrochemical performance. J Electrochem Soc 161:H656–H659CrossRef
    Zhou Y, Zhou W, Li M, Du Y, Wu S (2011) Hierarchical Cu2ZnSnS4 particles for a low-cost solar cell: morphology control and growth mechanism. J Phys Chem C 115:19632–19639CrossRef
  • 作者单位:Qingyao Wang (1) (2)
    Chao Chen (2)
    Wei Liu (2)
    Shanmin Gao (1)
    Xiuchun Yang (2)

    1. School of Chemistry and Materials Science, Ludong University, Yantai, 264025, People’s Republic of China
    2. School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘
All-solid-state quantum dot-sensitized TiO2 nanotube array solar cells have been drawing great attention to solar energy conversion, which break through restrictions in traditional solar cells, such as the high recombination at interfaces of porous TiO2 films/sensitizers/hole conductors/counter electrodes, instability of dyes, and leakage of solution electrolyte, and so the novel solar cells exhibit promising applications in the future. In this Minireview article, the assembling of solar cells including the preparation of TiO2 nanotube array photoanodes, quantum dot preparation and sensitization on photoanodes, filling of hole conductors in TiO2 nanotubes, and selection of counter electrodes are overviewed, and the development course of all-solid-state quantum dot-sensitized TiO2 nanotube array solar cells in recent years are summarized in detail. Moreover, the influences of TiO2 nanotube array photoanodes, quantum dots, solid electrolyte, and counter electrodes on photon-to-current efficiencies of solar cells are summarized. In addition, current problems of solid-state quantum dot-sensitized TiO2 nanotube array solar cells are analyzed, and the corresponding improvements, such as multisensitizers and passivation layers, are proposed to improve the photoelectric conversion efficiency. Finally, this Minireview provides a perspective for the future development of this novel solar cell.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700