Biodegradation of Cellulose-Containing Substrates by Micromycetes Followed by Bioconversion into Biogas
详细信息    查看全文
  • 作者:L. I. Prokudina ; A. A. Osmolovskiy ; M. A. Egorova
  • 关键词:cellulose ; containing substrates ; methanogenic microbial communities ; biogas
  • 刊名:Applied Biochemistry and Microbiology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:52
  • 期:2
  • 页码:190-198
  • 全文大小:645 KB
  • 参考文献:1.Song, H. and Clarke, P., Biores. Technol., 2009, vol. 100, no. 3, pp. 1268–1273.CrossRef
    2.Pommier, S., Liamas, A.M., and Lefebvre, X., Biores. Technol., 2010, vol. 101, no. 2, pp. 463–468.CrossRef
    3.Lynd, L.R., Weimer, J.P., van Zyl, W.H., and Isak, S., Microbiol. Mol. Biol. Rev., 2002, vol. 66, no. 3, pp. 506–577.CrossRef PubMed PubMedCentral
    4.Sun, Y. and Cheng, J., Biores. Technol., 2002, vol. 83, no. 1, pp. 1–11.CrossRef
    5.Teghammar, A., Yngvesson, J., Lundin, M., Taherzadeh, M.J., and Horvth, I.S., Biores. Technol., 2010, vol. 101, no. 4, pp. 1206–1212.CrossRef
    6.Saha, B.C., J. Ind. Microbiol. Biotechnol., 2003, vol. 30, no. 5, pp. 279–291.CrossRef PubMed
    7.Rabinovich, M.L. and Mel’nik, M.S., Usp. Biol. Khim., 2000, vol. 40, no. 1, pp. 205–266.
    8.Keller, F.A., Hamilton, J.E., and Nguyen, Q.A., Appl. Biochem. Biotechnol., 2003, vol. 105, nos. 1–3, pp. 27–41.CrossRef PubMed
    9.Lee, J.W., Gwak, K.S., Park, J.Y., Park, M.-J., Choi, D.-H., Kwon, M., and Choil, I.-G., J. Microbiol., 2007, vol. 45, no. 6, pp. 485–491.PubMed
    10.Schulein, M., Biochem. Soc. Trans., 1998, vol. 26, no. 2, pp. 164–167.CrossRef PubMed
    11.Stone, J.E., Scallan, A.M., Donefer, E., and Ahlgren, E., Adv. Chem. Ser., 1969, vol. 95, pp. 219–241.CrossRef
    12.Haichar, F.Z., Achouak, W., Christen, R., Heulin, T., Marol, C., Marais, M., Mougel, C., Ranjard, L., Balesdent, J., and Berge, O., Environ. Microbiol., 2007, vol. 9, no. 3, pp. 625–634.CrossRef PubMed
    13.Okeke, B.C. and Lu, J., Appl. Biochem. Biotechnol., 2011, vol. 163, no. 7, pp. 869–881.CrossRef PubMed
    14.Bayer, E.A., Shoham, Y., and Lamed, R., The Prokaryotes: Ecophysiology and Biochemistry, Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E., New York: Springer, 2006.
    15.Tsavkelova, E.A. and Netrusov, A.I., Appl. Biochem. Microbiol., 2012, vol. 48, no. 5, pp. 421–433.CrossRef
    16.Angelidaki, I., Karakashev, D., Batstone, D.J., Plugge, C.M., and Stams, A.J., Biomethanation and its Potential. Methanogenesis, Rosenzweig, S. and Ragsdale, W., Academic Press, 2011, vol. 494, pp. 327–351.
    17.Ferry, J.G., Curr. Opinion Biotechnol., 2011, vol. 22, no. 3, pp. 351–357.CrossRef
    18.Weiland, P., Eng. Life Sci., 2006, vol. 6, no. 3, pp. 302–309.CrossRef
    19.Antizar-Ladislao, B. and Turrion-Gomez, J.L., Biofuels, Bioprod. Bioref., 2008, vol. 2, no. 5, pp. 455–469.CrossRef
    20.Osmolovskiy, A.A., Zvonareva, E.S., Kreyer, V.G., Baranova, N.A., and Egorov, N.S., Russ. J. Bioorg. Chem., 2014, vol. 40, no. 6, pp. 634–639.CrossRef
    21.Tsavkelova, E.A., Aleksandrova, A.V., Cherdyntseva, T.A., Kolomeitseva, G.L., and Netrusov, A.I., Mikol. Fitopatol., 2003, vol. 37, no. 4, pp. 57–63.
    22.Tsavkelova, E.A., Egorova, M.A., Petrova, E.V., and Netrusov, A.I., Appl. Biochem. Microbiol., 2012, vol. 48, no. 4, pp. 377–384.CrossRef
    23.Miller, G.L., Anal. Chem., 1959, vol. 31, no. 3, pp. 426–428.CrossRef
    24.Lakshmi, A.S. and Narasimha, G., Ann. For. Res., 2012, vol. 55, no. 1, pp. 85–92.
    25.Padmavathi, T., Nandy, V., and Agarwal, P., Eur. J. Exper. Biol., 2012, vol. 2, no. 4, pp. 1161–1170.
    26.Matkar, K., Chapla, D., Divecha, J., Nighojkar, A., and Madamwar, D., Int. Biodeter. Biodegrad., 2013, vol. 78, pp. 24–33.CrossRef
    27.Peitersen, N., Biotechnol. Bioeng., 1975, vol. 17, no. 9, pp. 1291–1299.CrossRef PubMed
    28.Kubicek, C.P., Eur. J. Appl. Microbiol. Biotechnol., 1981, vol. 13, no. 4, pp. 226–231.CrossRef
    29.Mandels, M. and Reese, E.T., J. Bacteriol., 1957, vol. 73, no. 2, pp. 269–278.PubMed PubMedCentral
    30.Khan, M.H., Ali, S., Fakhru’l-Razi, A., and Alam, Z., J. Environ. Sci. Health, 2007, vol. 42, no. 4, pp. 381–386.CrossRef
    31.Singh, A., Singh, N., and Bishnoi, N.R., Int. J. Civil Environ. Eng., 2009, vol. 1, no. 1, pp. 23–26.
    32.Bastawde, K.B., J. Microbiol. Biotechnol., 1992, vol. 8, no. 1, pp. 45–49.CrossRef
    33.Eleazer, W.E., Odle, W.S., Wang, Y.S., and Barlaz, M.A., Environ. Sci. Technol., 1997, vol. 31, no. 3, pp. 911–917.CrossRef
    34.Barlaz, M., Ham, R.K., and Shaefer, D.M., CRC Crit. Rev. Environ. Control, 1990, vol. 19, no. 6, pp. 557–584.CrossRef
    35.Selig, M.J., Knoshaug, E.P., Adney, W.S., Himmel, M.E., and Decker, S.R., Biores. Technol., 2008, vol. 99, no. 11, pp. 4997–5005.CrossRef
    36.Muthangya, M., Manoni Mshandete, A., and Kajumulo Kivaisi, A., Int. J. Mol. Sci., 2009, vol. 10, no. 11, pp. 4805–4815.CrossRef PubMed PubMedCentral
    37.Schink, B., Microbiol. Mol. Biol. Rev., 1997, vol. 61, no. 2, pp. 262–280.PubMed PubMedCentral
    38.Mshandete, A., Bjornsson, L., Kivaisi, A.K., Rubindamayugi, M.S.T., and Mattiasson, B., Water Res., 2005, vol. 39, no. 8, pp. 1569–1575.CrossRef PubMed
    39.Menon, V. and Rao, M., Prog. Energ. Combust., 2012, vol. 38, no. 4, pp. 522–550.CrossRef
  • 作者单位:L. I. Prokudina (1)
    A. A. Osmolovskiy (1)
    M. A. Egorova (1)
    D. V. Malakhova (1)
    A. I. Netrusov (1)
    E. A. Tsavkelova (1)

    1. Faculty of Biology, Moscow State University, Moscow, 119992, Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Microbiology
    Medical Microbiology
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3024
文摘
The ability of micromycetes Trichoderma viride and Aspergillus terreus to decompose the cellulosecontaining substrates was studied. Office paper and cardboard, as well as a paper mixture, were found to be the most hydrolyzable. The cellulolytic activity of T. viride was 2–3 times higher than that of A. terreus; the highest values of 0.80 and 0.73 U/mL were obtained from office paper and the mixture of different types of paper, respectively. The micromycete cultivation conditions (composition of culture medium, sucrose cosubstrate addition, seeding technique) and the conditions of the fungus biomass treatment for its subsequent bioconversion into biogas by anaerobic microbial communities were optimized. It was shown that pretreatment improves the efficiency of biogas production from lignocellulosic materials when inoculated with microbial community of cattle manure. After pretreatment of the Jerusalem artichoke phytomass (stems and leaves) and its subsequent bioconversion into biogas by methanogenic community, the biogas yield was increased by1.5 times.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700