Impairment of stress granule assembly via inhibition of the eIF2alpha phosphorylation sensitizes glioma cells to chemotherapeutic agents
详细信息    查看全文
  • 作者:Fabrício de Almeida Souza Vilas-Boas…
  • 关键词:Glioma ; Stress granules ; Chemotherapy ; eIF2α ; Integrated stress response
  • 刊名:Journal of Neuro-Oncology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:127
  • 期:2
  • 页码:253-260
  • 全文大小:1,385 KB
  • 参考文献:1.Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10:319–331CrossRef PubMed
    2.Dirks PB (2010) Brain tumor stem cells: the cancer stem cell hypothesis writ large. Mol Oncol 4:420–430CrossRef PubMed
    3.Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRef PubMed
    4.Lu C, Shervington A (2008) Chemoresistance in gliomas. Mol Cell Biochem 312:71–80CrossRef PubMed
    5.Sarkaria JN, Kitange GJ, James CD et al (2008) Mechanisms of chemoresistance to alkylating agents in malignant glioma. Clin Cancer Res 14:2900–2908CrossRef PubMed PubMedCentral
    6.Anderson P, Kedersha N (2009) RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 10:430–436CrossRef PubMed
    7.Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33:141–150CrossRef PubMed
    8.Anderson P, Kedersha N (2002) Stressful initiations. J Cell Sci 15:3227–3234
    9.Kedersha N, Ivanov P, Anderson P (2013) Stress granules and cell signaling: more than just a passing phase. Trends Biochem Sci 38:494–506CrossRef PubMed
    10.Fournier MJ, Gareau C, Mazroui R (2010) The chemotherapeutic agent bortezomib induces the formation of stress granules. Cancer Cell Int. doi:10.​1186/​1475-2867-10-12 PubMed PubMedCentral
    11.Gareau C, Fournier MJ, Filion C et al (2011) p21(WAF1/CIP1) upregulation through the stress granule-associated protein CUGBP1 confers resistance to bortezomib-mediated apoptosis. PLoS ONE. doi:10.​1371/​journal.​pone.​0020254 PubMed PubMedCentral
    12.Mazroui R, Di Marco S, Kaufman RJ, Gallouzi IE (2007) Inhibition of the ubiquitin-proteasome system induces stress granule formation. Mol Biol Cell 18:2603–2618CrossRef PubMed PubMedCentral
    13.Moreau P, Richardson PG, Cavo M et al (2012) Proteasome inhibitors in multiple myeloma: 10 years later. Blood 120:947–959CrossRef PubMed PubMedCentral
    14.Styczynski J, Olszewska-Slonina D, Kolodziej B et al (2006) Activity of bortezomib in glioblastoma. Anticancer Res 26:4499–4503PubMed
    15.Vlachostergios PJ, Hatzidaki E, Befani CD et al (2013) Bortezomib overcomes MGMT-related resistance of glioblastoma cell lines to temozolomide in a schedule-dependent manner. Inv New Drugs 31:1169–1181CrossRef
    16.Vlachostergios PJ, Hatzidaki E, Stathakis NE et al (2013) Bortezomib downregulates MGMT expression in T98G glioblastoma cells. Cell Mol Neurobiol 33:313–318CrossRef PubMed
    17.Guo L, Chen R, Ma N et al (2013) Phosphorylation of eIF2α suppresses cisplatin-induced A549 cell apoptosis via p38 inhibition. Cancer Biother Radiopharm 28:268–273CrossRef PubMed
    18.Capdevila L, Cros S, Ramirez JL et al (2014) Neoadjuvant cisplatin plus temozolomide versus standard treatment in patients with unresectable glioblastoma or anaplastic astrocytoma: a differential effect of MGMT methylation. J Neurooncol 117:77–84CrossRef PubMed
    19.Aoki T, Mizutani T, Nojima K et al (2010) Phase II study of ifosfamide, carboplatin, and etoposide in patients with a first recurrence of glioblastoma multiforme. J Neurosurg 112:50–56CrossRef PubMed
    20.Kaufman RJ, Davies MV, Pathak VK, Hershey JWB (1989) The phosphorylation state of eukary9otic initiation factor 2 alters translational efficiency of specific mRNAs. Mol Cell Biol 9:946–958CrossRef PubMed PubMedCentral
    21.Sousa LP, Brasil BS, Silva BM et al (2005) Plasminogen/plasmin regulates c-fos and egr-1 expression via the MEK/ERK pathway. Biochem Biophys Res Commun 329:1065–1071CrossRef
    22.Kedersha NL, Gupta M, Li W et al (1999) RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 147:1431–1442CrossRef PubMed PubMedCentral
    23.Tourrière H, Chebli K, Zekri L et al (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 160:823–831CrossRef PubMed PubMedCentral
    24.DuRose JB, Scheuner D, Kaufman RJ et al (2009) Phosphorylation of eukaryotic translation initiation factor 2alpha coordinates rRNA transcription and translation inhibition during endoplasmic reticulum stress. Mol Cell Biol 29:4295–4307CrossRef PubMed PubMedCentral
    25.Han J, Back SH, Hur J et al (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15:481–490CrossRef PubMed PubMedCentral
    26.Kouroku Y, Fujita E, Tanida I et al (2007) ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ 14:230–239CrossRef PubMed
    27.Gerlitz G, Jagus R, Elroy-Stein O (2002) Phosphorylation of initiation factor-2 alpha is required for activation of internal translation initiation during cell differentiation. Eur J Biochem 269:2810–2819CrossRef PubMed
    28.Teng Y, Gao M, Wang J et al (2014) Inhibition of eIF2α dephosphorylation enhances TRAIL-induced apoptosis in hepatoma cells. Cell Death Dis. doi:10.​1038/​cddis.​2014.​24
    29.Vlachostergios PJ, Papandreou CN (2015) Efficacy of low dose temozolomide in combination with bortezomib in U87 glioma cells: a flow cytometric analysis. Arch Med Sci 11:307–310CrossRef PubMed PubMedCentral
  • 作者单位:Fabrício de Almeida Souza Vilas-Boas (1)
    Aristóbolo Mendes da Silva (2)
    Lirlândia Pires de Sousa (3)
    Kátia Maciel Lima (3)
    Juliana Priscila Vago (3)
    Lucas Felipe Fernandes Bittencourt (1)
    Arthur Estanislau Dantas (4)
    Dawidson Assis Gomes (4)
    Márcia Carvalho Vilela (5)
    Mauro Martins Teixeira (4)
    Lucíola Silva Barcelos (1) (6)

    1. Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
    2. Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
    3. Department of Clinical and Toxicological Analysis, Pharmacy Faculty, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
    4. Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
    5. Department of Health Sciences, Federal University of Juiz de Fora—Advanced Campus, Governador Valadares, Minas Gerais, 35010-177, Brazil
    6. Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal of Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901, Brazil
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Oncology
  • 出版者:Springer Netherlands
  • ISSN:1573-7373
文摘
Malignant gliomas are a lethal type of brain tumors that poorly respond to chemotherapeutic drugs. Several therapy resistance mechanisms have been characterized. However, the response to stress through mRNA translational control has not been evaluated for this type of tumor. A potential target would involve the alpha subunit of eukaryotic translation initiation factor (eIF2α) that leads to assembly of stress granules (SG) which are cytoplasmic granules mainly composed by RNA binding proteins and untranslated mRNAs. We assessed whether glioma cells are capable of assembling SG after exposure to different classes of chemotherapeutic agents through evaluation of the effects of interfering in this process by impairing the eIF2α signaling. C6 and U87MG cells were exposed to bortezomib, cisplatin, or etoposide. Forced expression of a dominant negative mutant of eIF2α (eIF2αDN) was employed to block this pathway. We observed that exposure to drugs stimulated SG assembly. This was reduced in eIF2αDN-transfected cells and this strategy enhanced chemotherapeutically-induced cell death for all drugs. Our data suggest that SG assembly occurs in glioma cells in response to chemotherapeutic drugs in an eIF2α-dependent manner and this response is relevant for drug resistance. Interfering with eIF2α signaling pathway may be a potential strategy for new co-adjuvant therapies to treat gliomas.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700