Flows in Complex Networks: Theory, Algorithms, and Application to Lennard–Jones Cluster Rearrangement
详细信息    查看全文
  • 作者:Maria Cameron (1)
    Eric Vanden-Eijnden (2)
  • 关键词:Transition path theory ; Self ; assembly ; Protein folding ; Glassy dynamics ; Markov state models
  • 刊名:Journal of Statistical Physics
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:156
  • 期:3
  • 页码:427-454
  • 全文大小:
  • 参考文献:1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)
    2. Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140, 1065-114 (2010) CrossRef
    3. Berezhkovskii, A., Hummer, G., Szabo, A.: Reactive flux and folding pathways in network models of coarse-grained protein dynamics. J. Chem. Phys. 130, 205102 (2009) CrossRef
    4. Berman, K.A., Konsowa, M.H.: Random paths and cuts, electrical networks, and reversible Markov chains. SIAM J. Discret. Math. 3, 311-19 (1990) CrossRef
    5. Bianchi, A., Bovier, A., Ioffe, D.: Sharp asymptotics for metastability in the random field Curie–Weiss model. Electron. J. Probab. 14, 1541-603 (2009) CrossRef
    6. Bovier, A.: Metastability. In: Kotecky, R. (ed.) Methods of Contemporary Statistical Mechanics. Springer, Berlin (2009). LNM 1970
    7. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability and low lying spectra in reversible Markov chains. Commun. Math. Phys. 228, 219-55 (2002) CrossRef
    8. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes 1. Sharp estimates for capacities and exit times. J. Eur. Math. Soc. 6, 399-24 (2004) CrossRef
    9. Bovier, A., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes. 2. Precise estimates for small eigenvalues. J. Eur. Math. Soc. 7, 69-9 (2005) CrossRef
    10. Vanden-Eijnden, E.: Transition path theory. In: Bowman, G.R., Pande, V.S., Noé, F. (eds.) An introduction to markov state models and their application to long time scale molecular simulation. Advances in experimental medicine and biology, vol. 797. Springer (2014)
    11. Cameron, M.K.: Computing Freidlin’s cycles for the overdamped Langevin dynamics. J. Stat. Phys. 152, 493-18 (2013) CrossRef
    12. Den Hollander, F.: Three lectures on metastability under stochastic dynamics. In: Kotecky, R. (ed.) Methods of Contemporary Mathematical Statistical Physics. Springer, Berlin (2009). Lecture Notes in Math. 1970
    13. Den Hollander, F., Jansen, S.: Berman–Konsowa principle for reversible Markov jump processes. arXiv:1309.1305v1
    14. Doyle, P. G., Snell, J. L.: Random Walks and Electric Networks, volume 22 of Carus Mathematical Monographs. Mathematical Association of America, Washington, DC (1984)
    15. Doye, J.P.K., Miller, M.A., Wales, D.J.: The double-funnel energy landscape of the 38-atom Lennard–Jones cluster. J. Chem. Phys. 110, 6896-906 (1999) CrossRef
    16. E, W., Vanden-Eijnden, E.: Towards a theory of transition paths. J. Stat. Phys. 123, 503-23 (2006)
    17. E, W., Vanden-Eijnden, E.: Transition-path theory and path-finding algorithms for the study of rare events. Ann. Rev. Phys. Chem. 61, 391-20 (2010)
    18. Freidlin, M.I.: Sublimiting distributions and stabilization of solutions of parabolic equations with small parameter. Soviet Math. Dokl. 18(4), 1114-118 (1977)
    19. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems, 3rd edn. Springer, Berlin (2012) CrossRef
    20. Freidlin, M.I.: Quasi-deterministic approximation, metastability and stochastic resonance. Physica D 137, 333-52 (2000) CrossRef
    21. Lu, J., Nolen, J.: Reactive trajectories and transition path processes. Probab. Theory Relat. Fields. 1-0 (2014). doi:10.1007/s00440-014-0547-y
    22. Mandelshtam, V.A., Frantsuzov, P.A.: Multiple structural transformations in Lennard–Jones clusters: generic versus size-specific behavior. J. Chem. Phys. 124, 204511 (2006) CrossRef
    23. Metzner, P., Schuette, Ch., Vanden-Eijnden, E.: Illustration of transition path theory on a collection of simple examples. J. Chem. Phys. 125, 084110 (2006) CrossRef
    24. Metzner, P., Schuette, Ch., Vanden-Eijnden, E.: Transition path theory for Markov jump processes. SIAM Multiscale Model. Simul. 7, 1192-219 (2009) CrossRef
    25. Miller III, T.F., Predescu, C.: Sampling diffusive transition paths. J. Chem. Phys. 126, 144102 (2007) CrossRef
    26. Neirotti, J.P., Calvo, F., Freeman, D.L., Doll, J.D.: Phase changes in 38-atom Lennard–Jones clusters. I. A parallel tempering study in the canonical ensemble. J. Chem. Phys. 112, 10340 (2000) CrossRef
    27. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Verlag, Springer Series in Operational Research (2006)
    28. Olivieri, E., Vares, M.E.: Large deviations and metastability. Encyclopedia of mathematics and its applications. Cambridge University Press, Cambridge (2005) CrossRef
    29. Picciani, M., Athenes, M., Kurchan, J., Taileur, J.: Simulating structural transitions by direct transition current sampling: The example of (LJ \(_{38}\) ). J. Chem. Phys. 135, 034108 (2011) CrossRef
    30. Vanden-Eijnden, E.: Transition path theory. In: Ferrario, M., Ciccotti, G., Binder, K. (eds.) omputer Simulations in Condensed Matter: From Materials to Chemical Biology, pp. 439-78. Springer, Berlin (2006)
    31. Wales, D.J.: Discrete path sampling. Mol. Phys. 100, 3285-306 (2002) CrossRef
    32. Wales, D.J.: Energy Landscapes. Cambridge University Press, Cambridge (2003)
    33. Wales, D.J.: Some further applications of discrete path sampling to cluster isomerization. Mol. Phys. 102, 891-08 (2004) CrossRef
    34. Wales, D.J.: Energy landscapes: calculating pathways and rates. Int. Rev. Chem. Phys. 25, 237-82 (2006) CrossRef
    35. Wales, D.J.: Calculating rate constants and committor probabilities for transition networks by graph transformation. J. Chem. Phys. 130, 204111 (2009) CrossRef
    36. Wales’s website contains the database for the Lennard–Jones-38 cluster: http://www-wales.ch.cam.ac.uk/examples/PATHSAMPLE/
    37. Wales, D.J., Doye, J.P.K.: Global optimization by Basin–Hopping and the lowest energy structures of Lennard–Jones clusters containing upto 110 atoms. J. Phys. Chem. A 101, 5111-116 (1997) CrossRef
    38. Wentzell, A.D.: On the asymptotics of eigenvalues of matrices with elements of order \(\exp \{-V_{ij}/2(\epsilon ^2)\}\) . Soviet Math. Dokl. 13, 65-8 (1972)
  • 作者单位:Maria Cameron (1)
    Eric Vanden-Eijnden (2)

    1. Department of Mathematics, University of Maryland, College Park, MD, 20742, USA
    2. Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY, 10012, USA
  • ISSN:1572-9613
文摘
A set of analytical and computational tools based on transition path theory (TPT) is proposed to analyze flows in complex networks. Specifically, TPT is used to study the statistical properties of the reactive trajectories by which transitions occur between specific groups of nodes on the network. Sampling tools are built upon the outputs of TPT that allow to generate these reactive trajectories directly, or even transition paths that travel from one group of nodes to the other without making any detour and carry the same probability current as the reactive trajectories. These objects permit to characterize the mechanism of the transitions, for example by quantifying the width of the tubes by which these transitions occur, the location and distribution of their dynamical bottlenecks, etc. These tools are applied to a network modeling the dynamics of the Lennard–Jones cluster with 38 atoms ( \(\mathrm{LJ}_{38}\) ) and used to understand the mechanism by which this cluster rearranges itself between its two most likely states at various temperatures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700