3-carene鈥?chemotype. For the 鈥溛?sup class="a-plus-plus">3-carene鈥?chemotype, the relative concentration of 螖3-carene during the needle growing season and immediately after emergence of seedlings was higher compared to that reached at needle maturity. Repeated removal of single needles (at weekly intervals during growth) from 5-year-old saplings did not influence the composition of monoterpenes. Within a natural Scots pine dominated woodland, 18% of mature Scots pines (N鈥?鈥?74) belonged to the 鈥渘o-螖3-carene鈥?chemotype. Chemotypic variation within populations means that the statistical power with which differences in monoterpene concentrations can be detected is lower when sampling from the whole population compared to sampling within chemotypes. Reduction of this background variation and accounting for chiral variation if present, would significantly aid efficiency, interpretation, and understanding of processes in chemical and ecological research. One method for achieving this is the screening of plants for chemotypes before the establishment of experiments or field sampling regimes. We present a summary of suitable analytical methods for needle tissue that facilitates this prior screening." />
Assessment and Implications of Intraspecific and Phenological Variability in Monoterpenes of Scots Pine (Pinus sylvestris) Foliage
详细信息    查看全文
  • 作者:Vera Thoss (1) (2) (4)
    Julianne O鈥橰eilly-Wapstra (3)
    Glenn R. Iason (1)
  • 关键词:Absolute concentration ; ; pinene ; Camphene ; ; pinene ; 螖3 ; carene ; Chemotypes ; Relative composition ; Seasonal variation
  • 刊名:Journal of Chemical Ecology
  • 出版年:2007
  • 出版时间:March 2007
  • 年:2007
  • 卷:33
  • 期:3
  • 页码:477-491
  • 全文大小:455KB
  • 参考文献:1. B<span class="a-plus-plus emphasis type-small-caps">arre , F., G<span class="a-plus-plus emphasis type-small-caps">oussard , F., and G<span class="a-plus-plus emphasis type-small-caps">eri , C. 2003. Variation in the suitability of / Pinus sylvestris to feeding by two defoliators, / Diprion pini (Hym., Diprionidae) and / Graellsia isabellae galliaegloria (Lep., Attacidae). / J. Appl. Entomol. 127:249鈥?57. ss="external" href="http://dx.doi.org/10.1046/j.1439-0418.2003.00655.x">CrossRef
    2. B<span class="a-plus-plus emphasis type-small-caps">ohlmann , J., C<span class="a-plus-plus emphasis type-small-caps">rock , J., J<span class="a-plus-plus emphasis type-small-caps">etter , R., and C<span class="a-plus-plus emphasis type-small-caps">roteau , R. 1998. Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir ( / Abies grandis). / Proc. Nat. Acad. Sci. U. S. A. 95:6756鈥?761. ss="external" href="http://dx.doi.org/10.1073/pnas.95.12.6756">CrossRef
    3. C<span class="a-plus-plus emphasis type-small-caps">halchat , J. C., G<span class="a-plus-plus emphasis type-small-caps">arry , R. P., M<span class="a-plus-plus emphasis type-small-caps">ichet , A., and R<span class="a-plus-plus emphasis type-small-caps">emery , A. 1985. The essential oils of 2 chemotypes of / Pinus sylvestris. / Phytochemistry 24:2443鈥?444. ss="external" href="http://dx.doi.org/10.1016/S0031-9422(00)83062-9">CrossRef
    4. D<span class="a-plus-plus emphasis type-small-caps">avis , E. M. and C<span class="a-plus-plus emphasis type-small-caps">roteau , R. 2000. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. / Top. Cur. Chem. 209:53鈥?5.
    5. D<span class="a-plus-plus emphasis type-small-caps">elorme , L. and L<span class="a-plus-plus emphasis type-small-caps">ieutier , F. 1990. Monoterpene composition of the preformed and induced resins of Scots pine, and their effect on bark beetles and associated fungi. / Eur. J. For. Pathol. 20:304鈥?16.
    6. D<span class="a-plus-plus emphasis type-small-caps">uncan , A. J., H<span class="a-plus-plus emphasis type-small-caps">artley , S. E., and I<span class="a-plus-plus emphasis type-small-caps">ason , G. R. 1994. The effect of monoterpene concentrations in Sitka Spruce ( / Picea sitchensis) on the browsing behavior of red deer ( / Cervus elaphus). / Can. J. Zool. 72:1715鈥?720. ss="external" href="http://dx.doi.org/10.1139/z94-231">CrossRef
    7. F<span class="a-plus-plus emphasis type-small-caps">orrest , G. I. 1980. Genotypic variation among native Scots pine populations in Scotland based on monoterpenes analysis. / Forestry 53:101鈥?28. ss="external" href="http://dx.doi.org/10.1093/forestry/53.2.101">CrossRef
    8. H<span class="a-plus-plus emphasis type-small-caps">atcher , P. E. 1994. Seasonal and age-related variation in the needles quality of five conifer species. / Oecologia 85:200鈥?12. ss="external" href="http://dx.doi.org/10.1007/BF00319402">CrossRef
    9. H<span class="a-plus-plus emphasis type-small-caps">eyworth , C. J., I<span class="a-plus-plus emphasis type-small-caps">ason , G. R., T<span class="a-plus-plus emphasis type-small-caps">emperton , V., J<span class="a-plus-plus emphasis type-small-caps">arvis , P. G., and D<span class="a-plus-plus emphasis type-small-caps">uncan , A. J. 1998. The effect of elevated CO<sub class="a-plus-plus">2sub> concentration and nutrient supply on carbon-based plant secondary metabolites in / Pinus sylvestris L. / Oecologia 115:344鈥?50. ss="external" href="http://dx.doi.org/10.1007/s004420050526">CrossRef
    10. H<span class="a-plus-plus emphasis type-small-caps">iltunen , R. 1976. On variation, inheritance and chemical interrelationships of monoterpenes in Scots pine ( / Pinus sylvestris L.). / Ann. Acad. Scient. Fenn. Series A IV Biologica 208.
    11. H<span class="a-plus-plus emphasis type-small-caps">uber , D. P. W., R<span class="a-plus-plus emphasis type-small-caps">alph , S., and B<span class="a-plus-plus emphasis type-small-caps">ohlmann , J. 2004. Genomic hardwiring and phenotypic plasticity of terpenoid-based defenses in conifers. / J. Chem. Ecol. 30:2399鈥?418. ss="external" href="http://dx.doi.org/10.1007/s10886-004-7942-2">CrossRef
    12. I<span class="a-plus-plus emphasis type-small-caps">ason , G. R., D<span class="a-plus-plus emphasis type-small-caps">uncan , A. J., H<span class="a-plus-plus emphasis type-small-caps">artley , S. E., and S<span class="a-plus-plus emphasis type-small-caps">taines , B. W. 1996. Feeding behaviour of red deer ( / Cervus elaphus) on Sitka spruce ( / Picea sitchensis): The role of carbon-nutrient balance. / For. Ecol. Manag. 88:121鈥?29. ss="external" href="http://dx.doi.org/10.1016/S0378-1127(96)03817-0">CrossRef
    13. I<span class="a-plus-plus emphasis type-small-caps">ason , G. R., L<span class="a-plus-plus emphasis type-small-caps">ennon , J. J., P<span class="a-plus-plus emphasis type-small-caps">akeman , R., T<span class="a-plus-plus emphasis type-small-caps">hoss , V., B<span class="a-plus-plus emphasis type-small-caps">eaton , J., and S<span class="a-plus-plus emphasis type-small-caps">im , D. 2005. Chemical diversity within individual Scots pine trees determines biodiversity of associated ground flora. / Ecol. Lett. 8:364鈥?69. ss="external" href="http://dx.doi.org/10.1111/j.1461-0248.2005.00732.x">CrossRef
    14. I<span class="a-plus-plus emphasis type-small-caps">keda , T., M<span class="a-plus-plus emphasis type-small-caps">atsumura , F., and B<span class="a-plus-plus emphasis type-small-caps">enjamin , D. M. 1977. Chemical basis for feeding adaptation for pine sawflies / Neodiprion rugifrons and / Neodiprion swainei. / Science 197:497鈥?99. ss="external" href="http://dx.doi.org/10.1126/science.197.4302.497">CrossRef
    15. J<span class="a-plus-plus emphasis type-small-caps">anson , R. 1992. Monoterpene concentrations in and above a forest of Scots pine. / J. Atmos. Chem. 14:385鈥?94. ss="external" href="http://dx.doi.org/10.1007/BF00115246">CrossRef
    16. K<span class="a-plus-plus emphasis type-small-caps">ainulainen , P., H<span class="a-plus-plus emphasis type-small-caps">olopainen , J., P<span class="a-plus-plus emphasis type-small-caps">alomaki , V., and H<span class="a-plus-plus emphasis type-small-caps">olopainen , T. 1996. Effects of nitrogen fertilization on secondary chemistry and ectomycorrhizal state of Scots pine seedlings and on growth of grey pine aphid. / J. Chem. Ecol. 22:617鈥?36. ss="external" href="http://dx.doi.org/10.1007/BF02033574">CrossRef
    17. K<span class="a-plus-plus emphasis type-small-caps">ainulainen , P., U<span class="a-plus-plus emphasis type-small-caps">triainen , J., H<span class="a-plus-plus emphasis type-small-caps">olopainen , J. K., O<span class="a-plus-plus emphasis type-small-caps">ksanen , J., and H<span class="a-plus-plus emphasis type-small-caps">olopainen , T. 2000a. Influence of elevated ozone and limited nitrogen availability on conifer seedlings in an open-air fumigation system: effects on growth, nutrient content, mycorrhiza, needle ultrastructure, starch and secondary compounds. / Glob. Chang. Biol. 6:345鈥?55. ss="external" href="http://dx.doi.org/10.1046/j.1365-2486.2000.00310.x">CrossRef
    18. K<span class="a-plus-plus emphasis type-small-caps">ainulainen , P., H<span class="a-plus-plus emphasis type-small-caps">olopainen , J. K., and H<span class="a-plus-plus emphasis type-small-caps">olopainen , T. 2000b. Combined effects of ozone and nitrogen on secondary compounds, amino acids, and aphid performance in Scots pine. / J. Environ. Qual. 29:334鈥?42. ss="external" href="http://dx.doi.org/10.2134/jeq2000.291334x">CrossRef
    19. K<span class="a-plus-plus emphasis type-small-caps">inloch , B. B., W<span class="a-plus-plus emphasis type-small-caps">estfall , R. D., and F<span class="a-plus-plus emphasis type-small-caps">orrest , G. I. 1986. Caledonian Scots pine鈥攐rigin and genetic structure. / New Phytol. 104:703鈥?29. ss="external" href="http://dx.doi.org/10.1111/j.1469-8137.1986.tb00671.x">CrossRef
    20. L<span class="a-plus-plus emphasis type-small-caps">amontagne , M., M<span class="a-plus-plus emphasis type-small-caps">argolis , H. A., and B<span class="a-plus-plus emphasis type-small-caps">auce , 脡. 2000. Testing the ecophysiological basis for the control of monoterpenes concentrations along canopy profiles in thinned and unthinned balsam fir stands. / Oecologia 124:318鈥?31. ss="external" href="http://dx.doi.org/10.1007/s004420000393">CrossRef
    21. L<span class="a-plus-plus emphasis type-small-caps">amontagne , M., B<span class="a-plus-plus emphasis type-small-caps">auce , 脡., and M<span class="a-plus-plus emphasis type-small-caps">argolis , H. A. 2002. Testing the ecophysiological basis for the control of monoterpenes concentrations in thinned and unthinned balsam fir stands across different drainage classes. / Oecologia 130:15鈥?4.
    22. L<span class="a-plus-plus emphasis type-small-caps">angenheim , J. H. 1994. Higher-plant terpenoids鈥攁 phytocentric overview of their ecological roles. / J. Chem. Ecol. 20:1223鈥?280. ss="external" href="http://dx.doi.org/10.1007/BF02059809">CrossRef
    23. L<span class="a-plus-plus emphasis type-small-caps">atta , R. G., L<span class="a-plus-plus emphasis type-small-caps">inhart , Y. B., L<span class="a-plus-plus emphasis type-small-caps">undquist , L., and S<span class="a-plus-plus emphasis type-small-caps">nyder , M. A. 2000. Patterns of monoterpene variation within individual trees in ponderosa pine. / J. Chem. Ecol. 26:1341鈥?357. ss="external" href="http://dx.doi.org/10.1023/A:1005471322069">CrossRef
    24. L<span class="a-plus-plus emphasis type-small-caps">atta , R. G., L<span class="a-plus-plus emphasis type-small-caps">inhart , Y. B., S<span class="a-plus-plus emphasis type-small-caps">nyder , M. A., and L<span class="a-plus-plus emphasis type-small-caps">undquist , L. 2003. Patterns of variation and correlation in the monoterpene composition of xylem oleoresin within populations of ponderosa pine. / Biochem. Syst. Ecol. 31:451鈥?65. ss="external" href="http://dx.doi.org/10.1016/S0305-1978(02)00176-X">CrossRef
    25. L<span class="a-plus-plus emphasis type-small-caps">in , J. X., S<span class="a-plus-plus emphasis type-small-caps">ampson , D. A., and C<span class="a-plus-plus emphasis type-small-caps">eulemans , R. 2001. The effect of crown position and tree age on resin-canal density in Scots pine ( / Pinus sylvestris L.) needles. / Can. J. Bot. 79:1257鈥?261. ss="external" href="http://dx.doi.org/10.1139/cjb-79-11-1257">CrossRef
    26. L<span class="a-plus-plus emphasis type-small-caps">inhart , J. B. and T<span class="a-plus-plus emphasis type-small-caps">hompson , J. D. 1999. Thyme is of the essence: biochemical polymorphism and multispecies deterrence. / Evol. Ecol. Res. 1:151鈥?71.
    27. L<span class="a-plus-plus emphasis type-small-caps">itvak , M. E. and M<span class="a-plus-plus emphasis type-small-caps">onson , R. K. 1998. Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory. / Oecologia 114:531鈥?40. ss="external" href="http://dx.doi.org/10.1007/s004420050477">CrossRef
    28. M<span class="a-plus-plus emphasis type-small-caps">artin , D., F<span class="a-plus-plus emphasis type-small-caps">盲ldt , J., and B<span class="a-plus-plus emphasis type-small-caps">ohlmann , J. 2004. Functional characterization of nine Norway spruce / TPS genes and evolution of gymnosperm terpene synthases of the / TPS-d subfamily. / Plant Physiol. 135:1908鈥?927. ss="external" href="http://dx.doi.org/10.1104/pp.104.042028">CrossRef
    29. N<span class="a-plus-plus emphasis type-small-caps">aydenov , K. D., T<span class="a-plus-plus emphasis type-small-caps">remblay , F. M., A<span class="a-plus-plus emphasis type-small-caps">lexandrov , A., and F<span class="a-plus-plus emphasis type-small-caps">enton , N. J. 2005. Structure of / Pinus sylvestris L. populations in Bulgaria revealed by chloroplast microsatellites and terpene analysis: provenance tests. / Biochem. Syst. Ecol. 33:1226鈥?245. ss="external" href="http://dx.doi.org/10.1016/j.bse.2005.07.011">CrossRef
    30. N<span class="a-plus-plus emphasis type-small-caps">erg , A. M., H<span class="a-plus-plus emphasis type-small-caps">eijari , J., N<span class="a-plus-plus emphasis type-small-caps">oldt , U., V<span class="a-plus-plus emphasis type-small-caps">iitanen , H., V<span class="a-plus-plus emphasis type-small-caps">uorinen , M., K<span class="a-plus-plus emphasis type-small-caps">ainulainen , P., and H<span class="a-plus-plus emphasis type-small-caps">olopainen , J. K. 2004. Significance of wood terpenoids in the resistance of Scots pine provenances against the old house borer, / Hylotrupes bajulus, and brown-rot fungus, / Coniophora puteana. / J. Chem. Ecol. 30:125鈥?41. ss="external" href="http://dx.doi.org/10.1023/B:JOEC.0000013186.75496.68">CrossRef
    31. P<span class="a-plus-plus emphasis type-small-caps">aavolainen , L., K<span class="a-plus-plus emphasis type-small-caps">itunen , V., and S<span class="a-plus-plus emphasis type-small-caps">molander , A. 1998. Inhibition of nitrification in forest soil by monoterpenes. / Plant Soil 205:147鈥?54. ss="external" href="http://dx.doi.org/10.1023/A:1004335419358">CrossRef
    32. P<span class="a-plus-plus emphasis type-small-caps">akeman , R. J., B<span class="a-plus-plus emphasis type-small-caps">eaton , J. K., T<span class="a-plus-plus emphasis type-small-caps">hoss , V., L<span class="a-plus-plus emphasis type-small-caps">ennon , J. J., C<span class="a-plus-plus emphasis type-small-caps">ampbell , C. D., W<span class="a-plus-plus emphasis type-small-caps">hite , D., and I<span class="a-plus-plus emphasis type-small-caps">ason , G. R. (2006) The extended phenotype of Scots pine ( / Pinus sylvestris) structures the understorey assemblage. / Ecography 29:451鈥?57. ss="external" href="http://dx.doi.org/10.1111/j.2006.0906-7590.04617.x">CrossRef
    33. P<span class="a-plus-plus emphasis type-small-caps">hillips , M. A., W<span class="a-plus-plus emphasis type-small-caps">ildung , M. R., W<span class="a-plus-plus emphasis type-small-caps">illiams , D. C., H<span class="a-plus-plus emphasis type-small-caps">yatt , D. C., and C<span class="a-plus-plus emphasis type-small-caps">roteau , R. 2003. cDNA isolation, functional expression, and characterization of (+)-alpha-pinene synthase and (鈭?-alpha-pinene synthase from loblolly pine ( / Pinus taeda): stereocontrol in pinene biosynthesis. / Arch. Biochem. Biophys. 411:267鈥?76. ss="external" href="http://dx.doi.org/10.1016/S0003-9861(02)00746-4">CrossRef
    34. P<span class="a-plus-plus emphasis type-small-caps">ureswaran , D. S., G<span class="a-plus-plus emphasis type-small-caps">ries , R., and B<span class="a-plus-plus emphasis type-small-caps">orden , J. H. 2004a. Antennal responses of four species of tree-killing bark beetles (Coleoptera : Scolytidea) to volatiles collected from beetles, and their host and nonhost conifers. / Chemoecology 14:59鈥?6. ss="external" href="http://dx.doi.org/10.1007/s00049-003-0261-1">CrossRef
    35. P<span class="a-plus-plus emphasis type-small-caps">ureswaran , D. S., G<span class="a-plus-plus emphasis type-small-caps">ries , R., and B<span class="a-plus-plus emphasis type-small-caps">orden , J. H. 2004b. Quantitative variation in monoterpenes in four species of conifers. / Biochem. Syst. Ecol. 32:1109鈥?136. ss="external" href="http://dx.doi.org/10.1016/j.bse.2004.04.006">CrossRef
    36. R<span class="a-plus-plus emphasis type-small-caps">affa , K. F. and S<span class="a-plus-plus emphasis type-small-caps">teffeck , R. J. 1988. Computation of response factors for quantitative analysis of monoterpenes by gas鈥搇iquid chromatography. / J. Chem. Ecol. 14:1385鈥?390. ss="external" href="http://dx.doi.org/10.1007/BF01020142">CrossRef
    37. R<span class="a-plus-plus emphasis type-small-caps">othernberg , G., Y<span class="a-plus-plus emphasis type-small-caps">atziv , Y., and S<span class="a-plus-plus emphasis type-small-caps">asson , Y. 1998. Comparative autoxidation of 3-carene and 伪-pinene: factors governing regioselective hydrogen abstraction reactions. / Tetrahedron 54:593鈥?98. ss="external" href="http://dx.doi.org/10.1016/S0040-4020(97)10319-2">CrossRef
    38. S<span class="a-plus-plus emphasis type-small-caps">adof , C. S. and G<span class="a-plus-plus emphasis type-small-caps">rant , G. G. 1997. Monoterpene composition of / Pinus sylvestris varieties resistant and susceptible to / Dioryctria zimmermani. / J. Chem. Ecol. 23:1917鈥?927. ss="external" href="http://dx.doi.org/10.1023/B:JOEC.0000006479.39087.60">CrossRef
    39. S<span class="a-plus-plus emphasis type-small-caps">allas , L., L<span class="a-plus-plus emphasis type-small-caps">uomala , E. M., U<span class="a-plus-plus emphasis type-small-caps">triainen , J., K<span class="a-plus-plus emphasis type-small-caps">ainulainen , P., and H<span class="a-plus-plus emphasis type-small-caps">olopainen , J. K. 2003. Contrasting effects of elevated carbon dioxide concentration and temperature on rubisco activity, chlorophyll fluorescence, needle ultrastructure and secondary metabolites in conifer seedlings. / Tree Physiol. 23:97鈥?08.
    40. S<span class="a-plus-plus emphasis type-small-caps">chwab , W. 2003. Metabolome diversity: too few genes, too many metabolites? / Phytochemistry 62:837鈥?49. ss="external" href="http://dx.doi.org/10.1016/S0031-9422(02)00723-9">CrossRef
    41. S<span class="a-plus-plus emphasis type-small-caps">j枚din , K., P<span class="a-plus-plus emphasis type-small-caps">ersson , M., B<span class="a-plus-plus emphasis type-small-caps">org -K<span class="a-plus-plus emphasis type-small-caps">arlson , A. K., and N<span class="a-plus-plus emphasis type-small-caps">orin , T. 1996. Enantiomeric compositions of monoterpene hydrocarbons in different tissues of four individuals of / Pinus sylvestris. / Phytochemistry 41:439鈥?45. ss="external" href="http://dx.doi.org/10.1016/0031-9422(95)00652-4">CrossRef
    42. S<span class="a-plus-plus emphasis type-small-caps">j枚din , K., P<span class="a-plus-plus emphasis type-small-caps">ersson , M., F<span class="a-plus-plus emphasis type-small-caps">aldt , J., E<span class="a-plus-plus emphasis type-small-caps">kberg , I., and B<span class="a-plus-plus emphasis type-small-caps">org -K<span class="a-plus-plus emphasis type-small-caps">arlson , A. K. 2000. Occurrence and correlations of monoterpene hydrocarbon enantiomers in / Pinus sylvestris and / Picea abies. / J. Chem. Ecol. 26:1701鈥?720. ss="external" href="http://dx.doi.org/10.1023/A:1005547131427">CrossRef
    43. T<span class="a-plus-plus emphasis type-small-caps">heis , N. and L<span class="a-plus-plus emphasis type-small-caps">erdau , M. 2003. The evolution of function in plant secondary metabolites. / Int. J. Plant Sci. 164:93鈥?02. ss="external" href="http://dx.doi.org/10.1086/374190">CrossRef
    44. T<span class="a-plus-plus emphasis type-small-caps">hoss , V. and B<span class="a-plus-plus emphasis type-small-caps">yers , J. A. 2006. Monoterpene chemodiversity of ponderosa pine in relation to herbivory and bark beetle attack. / Chemoecology 16:51鈥?8. ss="external" href="http://dx.doi.org/10.1007/s00049-005-0331-7">CrossRef
    45. T<span class="a-plus-plus emphasis type-small-caps">iberi , R., N<span class="a-plus-plus emphasis type-small-caps">iccoli , A., C<span class="a-plus-plus emphasis type-small-caps">urini , M., E<span class="a-plus-plus emphasis type-small-caps">pifano , F., M<span class="a-plus-plus emphasis type-small-caps">arcotullio , M. C., and R<span class="a-plus-plus emphasis type-small-caps">osati , O. 1999. The role of the monoterpene composition in / Pinus spp. needles, in host selection by the pine processionary caterpillar, / Thaumetopoea pityocampa. / Phytoparasitica 27:263鈥?72.
    46. V<span class="a-plus-plus emphasis type-small-caps">okou , D., D<span class="a-plus-plus emphasis type-small-caps">ouvli , P., B<span class="a-plus-plus emphasis type-small-caps">lionis , G. J., and H<span class="a-plus-plus emphasis type-small-caps">alley , J. M. 2003. Effects of monoterpenoids, acting alone or in pairs, on seed germination and subsequent seedling growth. / J. Chem. Ecol. 29:2281鈥?301. ss="external" href="http://dx.doi.org/10.1023/A:1026274430898">CrossRef
    47. V<span class="a-plus-plus emphasis type-small-caps">on R<span class="a-plus-plus emphasis type-small-caps">udloff , E. 1975. Volatile leaf oil analysis in chemosystematic studies of North American conifers. / Biochem. Syst. Ecol. 2:131鈥?67. ss="external" href="http://dx.doi.org/10.1016/0305-1978(75)90055-1">CrossRef
    48. W<span class="a-plus-plus emphasis type-small-caps">allin , K. F. and R<span class="a-plus-plus emphasis type-small-caps">affa , K. F. 2001. Host-mediated interactions among feeding guilds: incorporation of temporal patterns can integrate plant defense theories to predict community level processes. / Ecol. 82:1387鈥?400. ss="external" href="http://dx.doi.org/10.2307/2679997">CrossRef
    49. W<span class="a-plus-plus emphasis type-small-caps">eidenhamer , J. D., M<span class="a-plus-plus emphasis type-small-caps">acias , F. A., F<span class="a-plus-plus emphasis type-small-caps">ischer , N. H., and W<span class="a-plus-plus emphasis type-small-caps">illiamson , G. B. 1993. Just how insoluble are monoterpenes. / J. Chem. Ecol. 19:1799鈥?807. ss="external" href="http://dx.doi.org/10.1007/BF00982309">CrossRef
    50. W<span class="a-plus-plus emphasis type-small-caps">eissmann , G. and L<span class="a-plus-plus emphasis type-small-caps">ange , W. 1990. A carene-free chemotype of / Pinus sylvestris. / Phytochemistry 29:2897鈥?898. ss="external" href="http://dx.doi.org/10.1016/0031-9422(90)87100-9">CrossRef
    51. W<span class="a-plus-plus emphasis type-small-caps">hite , C. S. 1994. Monoterpenes鈥攖heir effects on ecosystem nutrient cycling. / J. Chem. Ecol. 20:1381鈥?406. ss="external" href="http://dx.doi.org/10.1007/BF02059813">CrossRef
    52. W<span class="a-plus-plus emphasis type-small-caps">ibe , A., B<span class="a-plus-plus emphasis type-small-caps">org -K<span class="a-plus-plus emphasis type-small-caps">arlson , A. K., P<span class="a-plus-plus emphasis type-small-caps">ersson , M., N<span class="a-plus-plus emphasis type-small-caps">orin , T., and M<span class="a-plus-plus emphasis type-small-caps">ustaparta , H. 1998. Enantiomeric composition of monoterpene hydrocarbons in some conifers and receptor neuron discrimination of alpha-pinene and limonene enantiomers in the pine weevil, / Hylobius abietis. / J. Chem. Ecol. 24:273鈥?87. ss="external" href="http://dx.doi.org/10.1023/A:1022580308414">CrossRef
    53. W<span class="a-plus-plus emphasis type-small-caps">ink , M. 2003. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. / Phytochemistry 64:3鈥?9. ss="external" href="http://dx.doi.org/10.1016/S0031-9422(03)00300-5">CrossRef
  • 作者单位:Vera Thoss (1) (2) (4)
    Julianne O鈥橰eilly-Wapstra (3)
    Glenn R. Iason (1)

    1. The Macaulay Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
    2. School of Biological Sciences, Cruickshank Building, University of Aberdeen, Aberdeen, AB24 3UU, UK
    4. School of Chemistry, University of Wales, Bangor, LL57 2UW, UK
    3. School of Plant Science and CRC for Sustainable Production Forestry, University of Tasmania, Private Bag 55, Hobart, Tasmania, Australia, 7001
文摘
Scots pine populations contain individuals with widely differing amounts and composition of monoterpenes and exist as one of two chemotypes: with or without 螖3-carene. We investigated the significance for ecological studies of two types of variation in monoterpenes: (1) the inherent variability in the concentration of monoterpenes or their relative amounts in needles of seedlings, saplings, and mature trees; and (2) phenological variation in developing needles. The relative composition of needle monoterpenes in 5-year-old saplings changed during the needle development period until the final composition was reached upon needle maturity. Changes in composition depended on chemotype. Needles of the 鈥渘o-螖3-carene鈥?chemotype had higher absolute concentrations of 伪-pinene, 尾-pinene, camphene, and total monoterpenes than 鈥溛?sup class="a-plus-plus">3-carene鈥?chemotype. For the 鈥溛?sup class="a-plus-plus">3-carene鈥?chemotype, the relative concentration of 螖3-carene during the needle growing season and immediately after emergence of seedlings was higher compared to that reached at needle maturity. Repeated removal of single needles (at weekly intervals during growth) from 5-year-old saplings did not influence the composition of monoterpenes. Within a natural Scots pine dominated woodland, 18% of mature Scots pines (N鈥?鈥?74) belonged to the 鈥渘o-螖3-carene鈥?chemotype. Chemotypic variation within populations means that the statistical power with which differences in monoterpene concentrations can be detected is lower when sampling from the whole population compared to sampling within chemotypes. Reduction of this background variation and accounting for chiral variation if present, would significantly aid efficiency, interpretation, and understanding of processes in chemical and ecological research. One method for achieving this is the screening of plants for chemotypes before the establishment of experiments or field sampling regimes. We present a summary of suitable analytical methods for needle tissue that facilitates this prior screening.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700