Characterization of rubber particles and rubber chain elongation in Taraxacum koksaghyz
详细信息    查看全文
  • 作者:Thomas Schmidt (1)
    Malte Lenders (1)
    Andrea Hillebrand (1)
    Nicole van Deenen (1)
    Oliver Munt (1)
    Rudolf Reichelt (2)
    Wolfgang Eisenreich (3)
    Rainer Fischer (4)
    Dirk Prüfer (1) (4)
    Christian Schulze Gronover (4)
  • 刊名:BMC Biochemistry
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:11
  • 期:1
  • 全文大小:1206KB
  • 参考文献:1. van Beilen JB, Poirier Y: Establishment of new crops for the production of natural rubber. / Trends Biotechnol 2007, 25:522-29. CrossRef
    2. Ray DT: Guayule: A source of natural rubber. In / New Crops. Edited by: Janick J, Simon JE. Wiley New York, New York; 1993:338-43.
    3. Yagami A, Suzuki K, Saito H, Matsunaga K: Hev b 6.02 is the most important allergen in health care workers sensitized occupationally by natural rubber latex gloves. / Allergol Int 2009, 58:347-55. CrossRef
    4. Gomez JB, Hamzah S: Particle size distribution in Hevea latex - some observations on the electron microscopic method. / J Nat Rubber Res 1989, 4:204-11.
    5. Yeang HY, Yip E, Hamzah S: Characterization of zone 1 and zone 2 rubber particles in Hevea brasiliensis latex. / J Nat Rubber Res 1995, 10:108-23.
    6. Wood DF, Cornish K: Microstructure of purified rubber particles. / Int J Plant Sci 2000, 161:435-45. CrossRef
    7. Hasma H, Subramaniam A: Composition of lipids in latex of Hevea brasiliensis clone RRIM 501. / J Nat Rubber Res 1986, 1:30-0.
    8. Hasma H: Lipids associated with rubber particles and their possible role in mechanical stability of latex concentrates. / J Nat Rubber Res 1991, 6:105-14.
    9. Siler DJ, Goodrich-Tanrikulu M, Cornish K, Stafford AE, McKeon TA: Composition of rubber particles of Hevea brasiliensis , Parthenium argentatum , Ficus elastica , and Euphorbia lactiflua indicates unconventional surface structure. / Plant Physiol Biochem 1997, 35:881-89.
    10. Cornish K, Wood DF, Windle JJ: Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic- resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane. / Planta 1999, 210:85-6. CrossRef
    11. Cornish K, Siler DJ, Grosjean OK, Godman N: Fundamental similarities in rubber particle architecture and function in three evolutionarily divergent plant species. / J Nat Rubber Res 1993, 8:275-85.
    12. Poulter CD, Rilling HC: Prenyltransferase - mechanism of reaction. / Biochemistry 1976, 15:1079-083. CrossRef
    13. Poulter CD, Rilling HC: The prenyl transfer-reaction. Enzymatic and mechanistic studies of 1'-4 coupling reaction in the terpene biosynthetic-pathway. / Acc Chem Res 1978, 11:307-13. CrossRef
    14. Kharel Y, Koyama T: Molecular analysis of cis-prenyl chain elongating enzymes. / Nat Prod Rep 2003, 20:111-18. CrossRef
    15. Kharel Y, Zhang Y, Fujihashi M, Miki K, Koyama T: Identification of significant residues for homoallylic substrate binding of Micrococcus luteus B-P 26 undecaprenyl diphosphate synthase. / J Biol Chem 2001, 276:28459-8464. CrossRef
    16. Sato M, Sato K, Nishikawa S, Hirata A, Kato J, Nakano A: The yeast RER2 gene, identified by endoplasmic reticulum protein localization mutations, encodes cis -prenyltransferase, a key enzyme in dolichol synthesis. / Mol Cell Biol 1999, 19:471-83.
    17. Jones J, Viswanathan K, Krag SS, Betenbaugh MJ: Polyprenyl lipid synthesis in mammalian cells expressing human cis -prenyltransferase. / Biochem Biophys Res Commun 2005, 331:379-83. CrossRef
    18. Light DR, Dennis MS: Purification of a prenyltransferase that elongates cis -polyisoprene rubber from the latex of Hevea brasiliensis . / J Biol Chem 1989, 264:18589-8597.
    19. Siler DJ, Cornish K: A protein from Ficus elastica rubber particles is related to proteins from Hevea brasiliensis and Parthenium argentatum . / Phytochemistry 1993, 32:1097-102. CrossRef
    20. Cornish K, Siler DJ, Grosjean O: Immunoinhibition of rubber particle-bound cis -prenyltransferases in Ficus elastica and Parthenium argentatum . / Phytochemistry 1994, 35:1425. CrossRef
    21. Cornish K, Siler DJ: Characterization of cis -prenyltransferase activity localized in a buoyant fraction of rubber particles from Ficus elastica latex. / Plant Physiol Biochem 1996, 34:334-77.
    22. Kang H, Soo Kim Y, Chung GC: Characterization of natural rubber biosynthesis in Ficus benghalensis . / Plant Physiol Biochem 2000, 38:979-87. CrossRef
    23. Sato M, Fujisaki S, Sato K, Nishimura Y, Nakano A: Yeast Saccharomyces cerevisiae has two cis -prenyltransferases with different properties and localizations. Implication for their distinct physiological roles in dolichol synthesis. / Genes Cells 2001, 6:495-06. CrossRef
    24. Oh SK, Han K, Ryu SB, Kang H: Molecular cloning, expression, and functional analysis of a cis -prenyltransferase from Arabidopsis thaliana . / J Biol Chem 2000, 275:18482-8488. CrossRef
    25. Asawatreratanakul K, Zhang Y, Wititsuwannakul D, Wititsuwannakul R, Takahashi S, Rattanapittayaporn A, Koyama T: Molecular cloning, expression and characterization of cD3A encoding cis-prenyltransferases from Hevea brasiliensis . / Eur J Biochem 2003, 270:4671-680. CrossRef
    26. Berndt J: The biosynthesis of rubber. / US Government Res Rep AD-601 1963, 729.
    27. Cornish K, Backhaus RA: Rubber transferase activity in rubber particles of guayule. / Phytochemistry 1990, 29:3809-813. CrossRef
    28. Cornish K, Siler DJ: Effect of different allylic diphosphates on the initiation of new rubber molecules and on cis-1,4-polyisoprene biosynthesis in guayule ( Parthenium argentatum Gray). / J Plant Physiol 1995, 147:301-05.
    29. Singh AP, Wi SG, Chung GC, Kim YS, Kang H: The micromorphology and protein characterization of rubber particles in Ficus carica , Ficus benghalensis and Hevea brasiliensis . / J Exp Bot 2003, 54:985-92. CrossRef
    30. Matzelle T, Reichelt R: Review: Hydro, micro- and nanogels studied by complementary measurements based on SEM and SFM. / Acta Microscopica 2008, 17:45-1.
    31. Suomela H: / On the possibilities of growing / Taraxacum kok-saghyz / in Finland. National Agricultural Experimental Publications (valtion maatalous koetoiminnan julkaisuja), Helsinki; 1950.
    32. Duch MW, Grant DM: Carbon-13 chemical shift studies of the 1,4-polybutadienes and the 1,4-polyisoprenes. / Macromolecules 1970, 3:165-74. CrossRef
    33. Kang H, Kang MY, Han K: Identification of natural rubber and characterization of rubber biosynthetic activity in fig tree. / Plant Physiol 2000, 123:1133-142. CrossRef
    34. Cornish K: Similarities and differences in rubber biochemistry among plant species. / Phytochemistry 2001, 57:1123-134. CrossRef
    35. da Costa BMT: Regulation of rubber biosynthetic rate and molecular weight in Hevea brasiliensis by metal cofactor. / Biomacromolecules 2005, 6:279. CrossRef
    36. Scott DJ, da Costa BMT, Espy SC, Keasling JD, Cornish K: Activation and inhibition of rubber transferases by metal cofactors and pyrophosphate substrates. / Phytochemistry 2003, 64:123-34. CrossRef
    37. Tangpakdee J, Tanaka Y, Ogura K, Koyama T, Wititsuwannakul R, Wititsuwannakul D: Rubber formation by fresh bottom fraction of Hevea latex. / Phytochemistry 1997, 45:269-74. CrossRef
    38. Schmidt T, Hillebrand A, Wurbs D, Wahler D, Lenders M, Schulze Gronover C, Prüfer D: Molecular cloning and characterization of rubber biosynthetic genes from Taraxacum koksaghyz . / Plant Mol Biol Rep doi.org/10.1007/s11105-09-145-
    39. Archer BL, Audley BG, Cockbain EG, McSweeny GP: The biosynthesis of rubber - incorporation of mevalonate and isopentenyl pyrophosphate into rubber by Hevea brasiliensis -latex fractions. / Biochem J 1963, 89:565-74.
    40. McMullen AI, McSweeny GP: The biosynthesis of rubber: Incorporation of isopentenyl pyrophosphate into purified rubber particles by a soluble latex serum enzyme. / Biochem J 1966, 101:42.
    41. Lynen F: Biosynthetic pathways from acetate to natural products. / Pure Appl Chem 1967, 14:137-67. CrossRef
    42. Lepetit M, Ehling M, Gigot C, Hahne G: An internal standard improves the reliability of transient expression studies in plant protoplasts. / Plant Cell Rep 1991, 10:401-05. CrossRef
    43. Wititsuwannakul D, Rattanapittayaporn A, Koyama T, Wititsuwannakul R: Involvement of Hevea latex organelle membrane proteins in the rubber biosynthesis activity and regulatory function. / Macromol Biosci 2004, 4:314-23. CrossRef
    44. Fujii H, Koyama T, Ogura K: Efficient enzymatic hydrolysis of polyprenyl pyrophosphates. / Biochim Biophys Acta - Lipids and Lipid Metabolism 1982, 712:716-18. CrossRef
    45. Wahler D, Schulze Gronover C, Richter C, Foucu F, Twyman RM, Moerschbacher BM, Fischer R, Muth J, Prüfer D: Polyphenoloxidase silencing affects latex coagulation in Taraxacum spp . / Plant Physiol 2009, 151:334-46. CrossRef
    46. Toepfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss H: A set of plant expression vectors for transcriptional and translational fusions. / Nucl Acids Res 1987, 15:5890. CrossRef
    47. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. / Anal Biochem 1976, 72:248-54. CrossRef
    48. Towbin H, Staehelin T, Gordon J: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. / Proc Natl Acad Sci USA 1979, 76:4350-354. CrossRef
    49. Gietz D, Jean AS, Woods RA, Schiestl RH: Improved method for high efficiency transformation of intact yeast cells. / Nucl Acids Res 1992, 20:1425. CrossRef
    50. Baerends RJS, Faber KN, Kram AM, Kiel JAKW, Klei IJ, Veenhuis M: A stretch of positively charged amino acids at the 3 terminus of Hansenula polymorpha Pex3p is involved in incorporation of the protein into the peroxisomal membrane. / J Biol Chem 2000, 275:9986-995. CrossRef
    51. Negrutiu I, Shillito R, Potrykus I, Biasini G, Sala F: Hybrid genes in the analysis of transformation conditions. / Plant Mol Biol 1987, 8:363-73. CrossRef
    52. Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions - beta-glucuronidase as a sensitive and versatile gene fusion marker in higher-plants. / EMBO J 1987, 6:3901-907.
  • 作者单位:Thomas Schmidt (1)
    Malte Lenders (1)
    Andrea Hillebrand (1)
    Nicole van Deenen (1)
    Oliver Munt (1)
    Rudolf Reichelt (2)
    Wolfgang Eisenreich (3)
    Rainer Fischer (4)
    Dirk Prüfer (1) (4)
    Christian Schulze Gronover (4)

    1. Institut für Biochemie und Biotechnologie der Pflanzen, Westf?lische Wilhelms-Universit?t Münster, Hindenburgplatz 55, 48143, Münster, Germany
    2. Institut für Medizinische Physik und Biophysik, Westf?lische Wilhelms-Universit?t Münster, Robert-Koch Str. 31, D-48149, Münster, Germany
    3. Department Chemie, Lehrstuhl für Biochemie, Technische Universit?t München, Lichtenbergstrasse 4, 85748, Garching, Germany
    4. Fraunhofer Institut für Molekularbiologie und Angewandte ?kologie, Forckenbeckstr. 6, 52074, Aachen, Germany
文摘
Background Natural rubber is a biopolymer with exceptional qualities that cannot be completely replaced using synthetic alternatives. Although several key enzymes in the rubber biosynthetic pathway have been isolated, mainly from plants such as Hevea brasiliensis, Ficus spec. and the desert shrub Parthenium argentatum, there have been no in planta functional studies, e.g. by RNA interference, due to the absence of efficient and reproducible protocols for genetic engineering. In contrast, the Russian dandelion Taraxacum koksaghyz, which has long been considered as a potential alternative source of low-cost natural rubber, has a rapid life cycle and can be genetically transformed using a simple and reliable procedure. However, there is very little molecular data available for either the rubber polymer itself or its biosynthesis in T. koksaghyz. Results We established a method for the purification of rubber particles - the active sites of rubber biosynthesis - from T. koksaghyz latex. Photon correlation spectroscopy and transmission electron microscopy revealed an average particle size of 320 nm, and 13C nuclear magnetic resonance (NMR) spectroscopy confirmed that isolated rubber particles contain poly(cis-1,4-isoprene) with a purity >95%. Size exclusion chromatography indicated that the weight average molecular mass ( w) of T. koksaghyz natural rubber is 4,000-5,000 kDa. Rubber particles showed rubber transferase activity of 0.2 pmol min-1 mg-1. Ex vivo rubber biosynthesis experiments resulted in a skewed unimodal distribution of [1-14C]isopentenyl pyrophosphate (IPP) incorporation at a w of 2,500 kDa. Characterization of recently isolated cis-prenyltransferases (CPTs) from T. koksaghyz revealed that these enzymes are associated with rubber particles and are able to produce long-chain polyprenols in yeast. Conclusions T. koksaghyz rubber particles are similar to those described for H. brasiliensis. They contain very pure, high molecular mass poly(cis-1,4-isoprene) and the chain elongation process can be studied ex vivo. Because of their localization on rubber particles and their activity in yeast, we propose that the recently described T. koksaghyz CPTs are the major rubber chain elongating enzymes in this species. T. koksaghyz is amenable to genetic analysis and modification, and therefore could be used as a model species for the investigation and comparison of rubber biosynthesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700