Pulsed electric current induces the differentiation of human keratinocytes
详细信息    查看全文
  • 作者:Koji Y. Arai (1)
    Yohei Nakamura (1)
    Yuko Hachiya (1)
    Hiroyuki Tsuchiya (1)
    Ryuji Akimoto (2)
    Katsu Hosoki (2)
    Shohei Kamiya (2)
    Hideyuki Ichikawa (2)
    Toshio Nishiyama (1)
  • 关键词:Keratinocyte ; Differentiation ; Proliferation ; Electric stimulation
  • 刊名:Molecular and Cellular Biochemistry
  • 出版年:2013
  • 出版时间:2 - July 2013
  • 年:2013
  • 卷:379
  • 期:1
  • 页码:235-241
  • 全文大小:471KB
  • 参考文献:1. Ojingwa JC, Isseroff RR (2003) Electrical stimulation of wound healing. J Invest Dermatol 121:1-1. doi:10.1046/j.1523-1747.2003.12454.x CrossRef
    2. Zhao M (2009) Electrical fields in wound healing—an overriding signal that directs cell migration. Semin Cell Dev Biol 20:674-82. doi:10.1016/j.semcdb.2008.12.009 CrossRef
    3. Nishimura KY, Isseroff RR, Nuccitelli R (1996) Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J Cell Sci 109:199-07
    4. Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester JV, Bourne HR, Devreotes PN, McCaig CD, Penninger JM (2006) Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442:457-60. doi:10.1038/nature04925 CrossRef
    5. Fang KS, Ionides E, Oster G, Nuccitelli R, Isseroff RR (1999) Epidermal growth factor receptor relocalization and kinase activity are necessary for directional for directional migration of keratinocytes in DC electric fields. J Cell Sci 112:1967-978
    6. Zhao M, Dick A, Forrester JV, McCaig CD (1999) Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Mol Biol Cell 10:1259-276
    7. Trollinger DR, Isseroff RR, Nuccitelli R (2002) Calcium channel blockers inhibit galvanotaxis in human keratinocytes. J Cell Physiol 193:1-. doi:10.1002/jcp.10144 CrossRef
    8. Dube J, Rochette-Drouin O, Levesque P, Gauvin R, Roberge CJ, Auger FA, Goulet D, Bourdages M, Plante M, Moulin M, Germain L (2012) Human keratinocytes respond to direct current stimulation by increasing intracellular calcium: preferential response of poorly differentiated cells. J Cell Physiol 227:2660-667. doi:10.1002/jcp.23008 CrossRef
    9. Wemyss-Holden SA, Robertson GS, Hall PD, Dennison AR, Maddern GJ (2000) Electrolytic treatment of colorectal liver tumour deposits in a rat model: a technique with potential for patients with unresectable liver tumours. Dig Dis 18:50-7. doi:10.1159/000016965 CrossRef
    10. Cho MR, Thatte HS, Silvia MT, Golan DE (1999) Transmembrane calcium influx induced by ac electric fields. FASEB J 13:677-83
    11. Bullock AJ, Barker AT, Coulton L, Macneil S (2007) The effect of induced biphasic pulsed currents on re-epithelialization of a novel wound healing model. Bioelectromagnetics 28:31-1. doi:10.1002/bem.20267 CrossRef
    12. Todd DJ, Heylings DJ, Allen GE, McMillin WP (1991) Treatment of chronic varicose ulcers with pulsed electromagnetic fields: a controlled pilot study. Ir Med J 84:54-5
    13. Baker LL, Chambers R, DeMuth SK, Villar F (1997) Effects of electrical stimulation on wound healing in patients with diabetic ulcers. Diabetes Care 20:405-12. doi:10.2337/diacare.20.3.405 CrossRef
    14. Baker LL, Rubayi S, Villar F, Demuth SK (1996) Effects of electrical stimulation waveform on healing of ulcers in human beings with spinal cord injury. Wound Rep Reg 4:21-8. doi:10.1046/j.1524-475X.1996.40106.x CrossRef
    15. Bourguignon GJ, Bourguignon LY (1987) Electric stimulation of protein and DNA synthesis in human fibroblasts. FASEB J 1:398-02
    16. Bourguignon GJ, Jy W, Bourguignon LY (1989) Electrical stimulation of human fibroblasts causes an increase in Ca2+ influx and the exposure of additional insulin receptors. J Cell Physiol 140:379-85. doi:10.1002/jcp.1041400224 CrossRef
    17. Cheng K, Goldman RJ (1998) Electric fields and proliferation in dermal wound model: cell cycle kinetics. Bioelectromagnetics 19:68-4. doi:10.1002/(SICI)1521-186X(1998)19:2<68::AID-BEM2>3.0.CO;2-1 CrossRef
    18. Rosenspire AJ, Kindzeiskii AL, Petty HR (2000) Interferon-gamma and sinusoidal electric fields signal by modulating NAD(P)H oscillations in polarized neutrophils. Biophys J 79:3001-008. doi:10.1016/S0006-3495(00)76536-2 CrossRef
    19. Cho MR, Thatte HS, Lee RC, Golan DE (2000) Integrin-dependent human macrophage migration induced by oscillatory electrical stimulation. Ann Biomed Eng 28:234-43. doi:10.1114/1.263 CrossRef
    20. Hinsenkamp M, Jercinovic A, De Graef C, Wilaert F, Heenen M (1997) Effects of low frequency pulsed electrical current on keratinocytes in vitro. Bioelectromagnetics 18:250-54. doi:10.1002/(SICI)1521-186X(1997)18:3<250:AID-BEM8>3.0.CO;2-1 CrossRef
    21. Hori Y, Akimoto R, Hori A, Kato K, Chino D, Matsumoto S, Kamiya S, Watanabe Y (2009) Skin collagen reproduction increased by ascorbic acid derivative iontophoresis by frequent-reversal bipolar electric stimulation. J Cosmet Sci 60:415-22
    22. Fang KS, Farboud B, Nuccitelli R, Isseroff RR (1998) Migration of human keratinocytes in electric fields requires growth factors and extracellular calcium. J Invest Dermatol 111:751-56. doi:10.1046/j.1523-1747.1998.00366.x CrossRef
    23. Hennings H, Holbrook K, Steinert P, Yaspa S (1980) Growth and differentiation of mouse epidermal cells in culture: effects of extracellular calcium. Curr Probl Dermatol 10:3-5
    24. Kopan R, Traska G, Fuchs E (1987) Retinoids as important regulators of terminal differentiation: examining keratin expression in individual epidermal cells at various stages of keratinization. J Cell Biol 105:427-40. doi:10.1083/jcb.105.1.427 CrossRef
    25. Ponec M, Weerheim A, Kempenaar J, Boonstra J (1988) Proliferation and differentiation of human squamous carcinoma cell lines and normal keratinocytes: effects of epidermal growth, retinoids, and hydrocortisone. In Vitro Cell Dev Biol 24:764-70. doi:10.1007/BF02623646 CrossRef
    26. Fuchs E (1990) Epidermal differentiation: the bare essentials. J Cell Biol 111:2807-814. doi:10.1083/jcb.111.6.2807 CrossRef
    27. Mak VH, Cumpstone MB, Kennedy AH, Harmon CS, Guy RH, Potts RO (1991) Barrier function of human keratinocytes cultures grown at the air–liquid interface. J Invest Dermatol 96:323-27. doi:10.1111/1523-1747.ep12465212 CrossRef
    28. Hollander DA, Hakimi MY, Hartmann A, Wilhelm K, Windolf J (2000) The influence of hyperbaric oxygenation (HBO) on proliferation and differentiation on human keratinocyte culture. In Vitro Cell Dev Biol 36:261-69. doi:10.1023/A:1010145312698
    29. Bikle DD, Oda Y, Xie Z (2004) Calcium and 1,25(OH)2D: interacting drivers of epidermal differentiation. J Steroid Biochem Mol Biol 89-0:355-60. doi:10.1016/j.jsbmb.2004.03.020 CrossRef
    30. Mammone T, Ingrassia M, Goyarts E (2008) Osmotic stress induces terminal differentiation in cultured normal human epidermal keratinocytes. In Vitro Cell Dev Biol 44:135-39. doi:10.1007/s11626-008-9087-z CrossRef
    31. Karlsson T, Vahlquist A, Torma H (2010) Keratinocyte differentiation induced by calcium, phorbol ether or interferon-g elicits distinct changes in the retinoid signaling pathways. J Dermatol Sci 57:207-13. doi:10.1016/j.jdermsci.2009.12.013 CrossRef
    32. Saeki Y, Nagashima T, Kimura S, Okada-Hatakeyama M (2012) An ErbB receptor-mediated AP-1 regulatory network is modulated by STAT3 and c-MYC during calcium-dependent keratinocyte differentiation. Exp Dermatol 21:293-98. doi:10.1111/j.1600-0625.2012.01453.x CrossRef
    33. Menon GK, Grayson S, Elias PM (1985) Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J Invest Dermatol 84:508-12. doi:10.1111/1523-1747.ep12273485 CrossRef
    34. Hohl D, Lichti U, Breitkreutz D, Steinert PM, Roop DR (1991) Transcription of the human loricrin gene in vitro is induced by calcium and cell density and suppressed by retinoic acid. J Invest Dermatol 96:414-18. doi:10.1111/1523-1747.ep12469779 CrossRef
    35. Pillai S, Bikle DD (1991) Role of intracellular-free calcium in the cornified envelope formation of keratinocytes: differences in the mode of action of extracellular calcium and 1,25-dihydroxyvitamin D3. J Cell Physiol 146:94-00. doi:10.1002/jcp.1041460113 CrossRef
    36. Xie Z, Chang SM, Pennypacker SD, Liao EY, Bikle DD (2009) Phosphatidylinositol-4-phosphate 5-kinase 1α mediates extracellular calcium-induced keratinocyte differentiation. Mol Biol Cell 20:1695-704. doi:10.1091/mbc.E08-07-0756 CrossRef
    37. Hennings H, Holbrook K (1983) Calcium regulation of cell–cell contact and differentiation of epidermal cells in culture. An ultrastructural study. Exp Cell Res 143:127-42. doi:10.1016/0014-4827(83)90115-5 CrossRef
    38. Tu CL, Chang W, Xie Z (2008) Inactivation of the calcium sensing receptor inhibits E-cadherin-mediated cell–cell adhesion and calcium-induced differentiation in human epidermal keratinocytes. J Biol Chem 283:3519-528. doi:10.1074/jbc.M708318200 CrossRef
    39. Denda M, Fujiwara S, Hibino T (2006) Expression of voltage-gated calcium channel subunit α1C in epidermal keratinocytes and effects of agonist and antagonist of the channel on skin barrier homeostasis. Exp Dermatol 15:455-60. doi:10.1111/j.0906-6705.2006.00430.x CrossRef
    40. Yuspa SH, Kilkenny AE, Steinert PM, Roop DR (1989) Expression of murine epidermal differentiation makers is tightly regulated by restricted extracellular calcium concentrations in vitro. J Cell Biol 109:1207-217. doi:10.1083/jcb.109.3.1207 CrossRef
    41. Oda Y, Tu CL, Pillai S, Bikle DD (1998) The calcium sensing receptor and its alternatively spliced form in keratinocyte differentiation. J Biol Chem 273:23344-3352. doi:10.1074/jbc.273.36.23344 CrossRef
    42. Tu CL, Chang W, Bikle DD (2001) The extracellular calcium-sensing receptor is required for calcium-induced differentiation in human keratinocytes. J Biol Chem 276:41079-1085. doi:10.1074/jbc.M107122200 CrossRef
  • 作者单位:Koji Y. Arai (1)
    Yohei Nakamura (1)
    Yuko Hachiya (1)
    Hiroyuki Tsuchiya (1)
    Ryuji Akimoto (2)
    Katsu Hosoki (2)
    Shohei Kamiya (2)
    Hideyuki Ichikawa (2)
    Toshio Nishiyama (1)

    1. Scleroprotein Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
    2. Homer Ion Laboratory Co., Ltd, 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045, Japan
  • ISSN:1573-4919
文摘
Although normal human keratinocytes are known to migrate toward the cathode in a direct current (DC) electric field, other effects of the electric stimulation on keratinocyte activities are still unclear. We have investigated the keratinocyte differentiation under monodirectional pulsed electric stimulation which reduces the electrothermal and electrochemical hazards of a DC application. When cultured keratinocytes were exposed to the electric field of 3?V (ca. 100?mV/mm) or 5?V (ca. 166?mV/mm) at a frequency of 4,800?Hz for 5?min a day for 5?days, cell growth under the 5-V stimulation was significantly suppressed as compared with the control culture. Expression of mRNAs encoding keratinocyte differentiation markers such as keratin 10, involucrin, transglutaminase 1, and filaggrin was significantly increased in response to the 5-V stimulation, while the 3-V stimulation induced no significant change. After the 5-V stimulation, enhanced immunofluorescent stainings of involucrin and filaggrin were observed. These results indicate that monodirectional pulsed electric stimulation induces the keratinocyte differentiation with growth arrest.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700