Proton activity of Nafion 117 membrane measured from potential difference of hydrogen electrodes
详细信息    查看全文
  • 作者:Minoru Umeda (1)
    Kazuya Sayama (1)
    Takahiro Maruta (1)
    Mitsuhiro Inoue (1)
  • 关键词:Proton activity ; Nafion 117 membrane ; Hydrogen electrode ; Potential difference ; Nernst equation
  • 刊名:Ionics
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:19
  • 期:4
  • 页码:623-627
  • 全文大小:217KB
  • 参考文献:1. Lee W, Shibasaki A, Saito K, Sugita K, Okuyama K, Sugo T (1996) Proton transport through polyethylene-tetrafluoroethylene-copolymer-based membrane containing sulfonic acid group prepared by RIGP. J Electrochem Soc 143:2795-799 CrossRef
    2. Litster S, McLean G (2004) PEM fuel cell electrodes. J Power Sources 130:61-6 CrossRef
    3. Koyama M, Bada K, Sasaki K, Tsuboi H, Endou A, Kubo M, Del Carpio CA, Broclawik E, Miyamoto A (2006) First-principles study on proton dissociation properties of fluorocarbon- and hydrocarbon-based membranes in low humidity conditions. J Phys Chem B 110:17872-7877 CrossRef
    4. Kim L, Chung CG, Sung YW, Chung JS (2008) Dissolution and migration of platinum after long-term operation of a polymer electrolyte fuel cell under various conditions. J Power Sources 183:524-32 CrossRef
    5. Mohammadi F, Ashrafizadeh SN, Sattari A (2009) Aqueous HCl electrolysis utilizing an oxygen reducing cathode. Chem Eng J 155:757-62 CrossRef
    6. Korzenowski C, Rodrigues MAS, Bresciani L, Bernardes AM, Ferreira JZ (2008) Purification of spent chromium bath by membrane electrolysis. J Hazard Mater 152:960-67 CrossRef
    7. Russell DG, Senior JB (1980) Studies on trifluoromethanesulfonic acid. Part 2. Conductivities of solutions of metal trifluoromethanesulfonates and other bases in trifluoromethanesulfonic acid. Can J Chem 58:22-9 CrossRef
    8. Sood DS, Sherman SC, Iretskii AV, Kenvin JC, Schiraldi DA, White MG (2001) The formylation of toluene in trifluoromethanesulfonic acid. J Catal 199:149-53 CrossRef
    9. Pizzio LR (2006) Synthesis and characterization of trifluoromethanesulfonic acid supported on mesoporous titania. Mater Lett 60:3931-935 CrossRef
    10. Ota K, Nishigori S, Kamiya N (1988) Dissolution of platinum anodes in sulfuric acid solution. J Electroanal Chem 257:205-15 CrossRef
    11. Kodera F, Kuwahara Y, Nakazawa A, Umeda M (2007) Electrochemical corrosion of platinum electrode in concentrated sulfuric acid. J Power Sources 172:698-03 CrossRef
    12. Huggins RA (2000) Reference electrodes and the Gibbs phase rule. Solid State Ionics 136-37:1321-328 CrossRef
    13. Nakayama S, Onishi K, Asahi T, Aung YL, Kuwata S (2009) Response characteristics of all-solid-state pH sensor using Li5YSi4O12 glass. Ceram Int 35:3057-060 CrossRef
    14. Zhao R, Xu M, Wang J, Chen G (2010) A pH sensor based on the TiO2 nanotube array modified Ti electrode. Electrochim Acta 55:5647-651 CrossRef
    15. Ha S, Rice CA, Masel RI, Wieckowski A (2002) Methanol conditioning for improved performance of formic acid fuel cells. J Power Sources 112:655-59 CrossRef
    16. Sethuraman VA, Weidner JW (2010) Analysis of sulfur poisoning on a PEM fuel cell electrode. Electrochim Acta 55:5683-694 CrossRef
    17. Sondheimer SJ, Bunce NJ, Lemke ME, Fyfe CA (1986) Acidity and catalytic activity of Nafion-H. Macromolecules 19:339-43 CrossRef
    18. Batamack P, Fraissard J (1997) Proton NMR studies on concentrated aqueous sulfuric acid solutions and Nafion-H. Catal Lett 49:129-36 CrossRef
    19. Bas C, Reymond L, Danérol A-S, Albérola ND, Rossinot E, Flandin L (2009) Key counter ion parameters governing polluted Nafion membrane properties. J Polym Sci Part B: Polym Phys 47:1381-392 CrossRef
    20. Seger B, Vinodgopal K, Kamat PV (2007) Proton activity in Nafion films: probing exchangeable protons with methylene blue. Langmuir 23:5471-476 CrossRef
    21. Zhang G, Kandlikar SG (2012) A critical review of cooling techniques in proton exchange membrane fuel cell stacks. Int J Hydrogen Energy 37:2412-429 CrossRef
    22. Umeda M, Maruta T, Inoue M, Nakazawa A (2008) Cathode platinum degradation in membrane electrode assembly studied using a solid-state electrochemical cell. J Phys Chem C 112:18098-8103 CrossRef
    23. Inoue M, Iwasaki T, Sayama K, Umeda M (2010) Effect of conditioning method on direct methanol fuel cell performance. J Power Sources 195:5986-989 CrossRef
    24. Umeda M, Sayama K, Inoue M (2011) Temperature and methanol concentration dependences of direct methanol fuel cell performance measured by single cell having reference electrode. J Renew Sust Energy 3:043107 CrossRef
    25. Janz GJ (1961) Silver-silver halide electrode. In: Ives DJG, Janz GJ (eds) Reference electrode theory and practice. Academic, New York, pp 179-30, Chapter 4
    26. Bard AJ, Faulkner LR (1980) Electrochemical methods, fundamentals and applications. Wiley, New York, p 71
    27. Hinatsu JT, Mizuhata M, Takenaka H (1994) Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor. J Electrochem Soc 141:1493-498 CrossRef
    28. Chen S-L, Xu K-Q, Dong P (2005) Preparation of three-dimensionally ordered inorganic/organic bi-continuous composite proton conducting membranes. Chem Mater 17:5880-883 CrossRef
    29. Saito M, Hayamizu K, Okada T (2005) Temperature dependence of ion and water transport in perfluorinated ionomer membranes for fuel cells. J Phys Chem B 109:3112-119 CrossRef
    30. Hongsirikarn K, Mo X, Goodwin JG (2010) Esterification as a diagnostic tool to predict proton conductivity affected by impurities on Nafion components for proton exchange membrane fuel cells. J Power Sources 195:3416-424 CrossRef
    31. Bandyopadhyay A, Bhadra A, Swarnakar RK, Raghuwanshi NS, Singh R (2012) Estimation of reference evapotranspiration using a user-friendly decision support system: DSS_ET. Agric Forest Meteorol 154-55:19-9 CrossRef
    32. Sumner JJ, Creager SE, Ma JJ, DesMarteau DD (1998) Proton conductivity in Nafion? 117 and in a novel bis[(perfluoroalkyl)sulfonyl]imide ionomer membrane. J Electrochem Soc 145:107-10 CrossRef
    33. Bard AJ, Faulkner LR (1980) Electrochemical methods, fundamentals and applications. Wiley, New York, pp 49-0
    34. Bhardwaj RC, Enayetullah MA, Bockris JO’M (1990) Proton activities in concentrated phosphoric and trifluoromethane sulfonic acid at elevated temperature in relation to acid fuel cells. J Electrochem Soc 137:2070-076 CrossRef
  • 作者单位:Minoru Umeda (1)
    Kazuya Sayama (1)
    Takahiro Maruta (1)
    Mitsuhiro Inoue (1)

    1. Department of Materials Science and Technology, Faculty of Engineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata, 940-2188, Japan
  • ISSN:1862-0760
文摘
The proton activity of the Nafion membrane was estimated from the potential difference between a normal hydrogen electrode (NHE) in 0.5?mol?dm? H2SO4 and a dynamic hydrogen electrode (DHE) constructed on a Nafion 117 membrane. The potential difference between the DHE and the NHE was directly measured at the same temperature in a box chamber filled with N2 gas. As a result, the potential difference of E NHE??-em class="a-plus-plus">E DHE changes from 0.006 to ?.024?V with the increasing temperature from 289 to 313?K; however, the potential difference remains at around ?.024?V when the temperature is between 313 and 343?K. Based on these data in combination with the Nernst equation, the proton activity of the Nafion 117 membrane at 289?K is estimated to be 0.8, which increases up to ca. 2.4 with the increasing temperature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700