High temperature stability of electrically conductive Pt–Rh/ZrO2 and Pt–Rh/HfO2 nanocomposite thin film electrodes
详细信息    查看全文
  • 作者:Scott C. Moulzolf (1)
    David J. Frankel (1)
    Mauricio Pereira da Cunha (1) (2)
    Robert J. Lad (1) (3)
  • 刊名:Microsystem Technologies
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:20
  • 期:4-5
  • 页码:523-531
  • 全文大小:1,524 KB
  • 参考文献:1. Aita CR, Wiggins MD, Whig R, Scanlan CM (1996) Thermodynamics of tetragonal zirconia formation in a nanolaminate film. J Appl Phys 79:1176-178 CrossRef
    2. Canabal A, Davulis PM, Harris GM, Pereira da Cunha M (2010) High-temperature battery-free wireless microwave acoustic resonator sensor system. Electron Lett 46:471-72 CrossRef
    3. Courbat J, Briand D, de Rooij NF (2008) Reliability improvement of suspended platinum-based micro-heating elements. Sens Actuators A 142:284-91 CrossRef
    4. Davulis PM, Pereira da Cunha M (2012) Determination and experimental verification of high-temperature SAW orientations on langatate. IEEE Trans Ultr Ferr Freq Contr 59:287-11 CrossRef
    5. Firebaugh SL, Jensen KF, Schmidt MA (1998) Investigation of high-temperature degradation of platinum thin films with in situ resistance measurement apparatus. J. Microelectromech Syst 7:128-35 CrossRef
    6. Frankel DJ, Bernhardt GP, Sturtevant BT, Moonlight T, Pereira da Cunha M, Lad RJ (2008) Stable electrodes and ultrathin passivation coatings for high temperature sensors in harsh environments. Proc IEEE Sensors 82-5
    7. Garvie RC (1978) Stabilization of the tetragonal structure in zirconia monocrystals. J Phys Chem 82:218-24 CrossRef
    8. Gregory OJ, You T (2005) Ceramic temperature sensors for harsh environments. IEEE Sens J 5:833-38 CrossRef
    9. Gusev EP, Narayanan V, Frank MM (2006) Advanced high-к dielectric stacks with poly Si and metal gates: recent progress and current challenges. IBM J Res Dev 50:387-10 CrossRef
    10. Hoppe EE, Aita CR (2007) Initial phases in sputter deposited HfO2-Al2O3 nanolaminate films. Appl Phys Lett 91:203105 CrossRef
    11. Huang H, Nakamura M, Su P, Fasching R, Saito Y, Prinz FB (2007) High-performance ultrathin solid oxide fuel cells for low-temperature operation. J Electrochem Soc 154:B20–B24 CrossRef
    12. Hunter GW, Neudeck PG, Okojie RS, Beheim GM, Powell JA (2003) An overview of high temperature electronics and sensor development at NASA Glenn Research Center. J. Turbomachinery 125:658-64 CrossRef
    13. Kerman K, Lai BK, Ramanathan S (2011) Pt/Y0.16Zr0.84O1.92/Pt thin film solid oxide fuel cells: electrode microstructure and stability considerations. J Power Sources 196:2608-614 CrossRef
    14. Lee KN, Lee DS, Jung SW, Jang YH, Kim YK, Seong WK (2009) A high-temperature MEMS heater using suspended silicon structures. J Micromech Microeng 19:115011-15018 CrossRef
    15. Mailly F, Giani A, Bonnot R, Temple-Boyer P, Pascal-Delannoy F, Foucaran A, Boyer A (2001) Anemometer with hot platinum thin film. Sens Actuators A 94:32-8 CrossRef
    16. Miyakawa N, Legner W, Ziemann T, Telitschkin D, Fecht H-J, Friedberger A (2012) MEMS-based microthruster with integrated platinum thin film resistance temperature detector (RTD), heater meander and thermal insulation for operation up to 1000°C. Microsyst Techn 18:1077-087 CrossRef
    17. Moulzolf SC, Lad RJ (2000) Diffraction studies of cubic phase stability in undoped zirconia thin films. J Mater Res 15:369-76 CrossRef
    18. Moulzolf SC, Frankel DJ, Bernhardt GP, Nugent B, Lad RJ (2011) Thin film electrodes and passivation coatings for harsh environment microwave acoustic sensors. Proc SPIE: Smart Sens, Actuators, MEMS V 8066:806606 CrossRef
    19. Okojie RS, Spry D, Krotine J, Salupo C, Wheeler DR (2000) Stable Ti/TaSi2/Pt Ohmic contacts on n-type 6H-SiC epilayer at 600°C in air. Proc Mat Res Soc 622-28
    20. Pereira da Cunha M, Moonlight T, Lad RJ, Bernhardt G, Frankel DJ (2007) Enabling very high temperature acoustic wave devices for sensor & frequency control applications. Proc. IEEE Ultrasonics 2107-110
    21. Pereira da Cunha M, Moonlight T, Lad RJ, Frankel DJ, Bernhardt G (2008) High temperature sensing technology for applications up to 1000°C. Proc IEEE Sensors 752-55
    22. Pereira da Cunha M, Lad RJ, Moonlight T, Moulzolf SC, Canabal A, Behanan R, Davulis PM, Frankel DJ, Bernhardt G, Pollard T, McCann DF (2011) Recent advances in harsh environment acoustic wave sensors for contemporary applications. Proc IEEE Sensors 614-17
    23. Puurunen RL (2005) Surface chemisty of atomic layer deposition: a case study of the trimethlyaluminium process. J Appl Phys 97:121301 CrossRef
    24. Schofield MA, Aita CR, Rice PM, Gajdardziska-Josifovska M (1998) Transmission electron microscopy study of zirconia-alumina nanoalminates grown by reactive sputter deposition. Part II: transformation behavior of tetragonal zirconia nanocrystallites. Thin Solid Films 326:117-25 CrossRef
    25. Semancik S, Cavicchi RE, Wheeler MC, Tiffany JE, Poirier GE, Walton RM, Suehle JS, Panchapakesan B, DeVoe DL (2001) Microhotplate platforms for chemical sensor research. Sens Actuators B 77:579-91 CrossRef
    26. Spannhake J, Schulz O, Helwig A, Krenkow A, Müller G, Doll T (2006) High-temperature MEMS heater platforms: long-term performance of metal and semiconductor heater material. Sensors 6:405-19 CrossRef
    27. Sturtevant BT, Pereira da Cunha M, Lad RJ (2013) Properties of SiAlO2N protective coatings on surface acoustic wave devices. Thin Solid Films 534:198-04 CrossRef
    28. Thompson CV (2012) Solid-state dewetting of thin films. Annu Rev Mater Res 42:399-34 CrossRef
    29. Tiggelaar RM, Sanders RGP, Groenland AW, Gardeniers JGE (2009) Stability of thin platinum films implemented in high-temperature microdevices. Sens Actuators A 152:39-7 CrossRef
    30. Zhu X, Zhu J, Li A, Liu Z, Ming N (2009) Challenges in atomic-scale characterization of high-k dielectrics and metal gate electrodes for advanced CMOS gate stacks. J Mater Sci Technol 25:289-13 CrossRef
  • 作者单位:Scott C. Moulzolf (1)
    David J. Frankel (1)
    Mauricio Pereira da Cunha (1) (2)
    Robert J. Lad (1) (3)

    1. Laboratory for Surface Science & Technology, University of Maine, Orono, ME, 04469, USA
    2. Department of Electrical & Computer Engineering, University of Maine, Orono, ME, 04469, USA
    3. Department of Physics and Astronomy, University of Maine, Orono, ME, 04469, USA
  • ISSN:1432-1858
文摘
Nanocomposite films made up of either Pt–Rh/ZrO2 or Pt–Rh/HfO2 materials were co-deposited using multiple e-beam evaporation sources onto langasite (La3Ga5SiO14) substrates, both as blanket films and as patterned interdigital transducer electrodes for surface acoustic wave sensor devices. The films and devices were tested after different thermal treatments in a tube furnace up to 1,200?°C. X-ray diffraction and electron microscopy results indicate that Pt–Rh/HfO2 films are stabilized by the formation of monoclinic HfO2 precipitates after high temperature exposure, which act as pinning sites to retard grain growth and prevent agglomeration of the conductive cubic Pt–Rh phase. The Pt–Rh/ZrO2 films were found to be slightly less stable, and contain both tetragonal and monoclinic ZrO2 precipitates that also helps prevent Pt–Rh agglomeration. Film conductivities were measured versus temperature for Pt–Rh/HfO2 films on a variety of substrates, and it was concluded that La and/or Ga diffusion from the langasite substrate into the nanocomposite films is detrimental to film stability. An Al2O3 diffusion barrier grown on langasite using atomic layer deposition was found to be more effective than a SiAlON barrier layer in minimizing interdiffusion between the nanocomposite film and the langasite crystal at temperatures above 1,000?°C.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700