Observation and tunability of room temperature photoluminescence of GaAs/GaInAs core-multiple-quantum-well shell nanowire structure grown on Si (100) by molecular beam epitaxy
详细信息    查看全文
  • 作者:Kwang Wook Park (1)
    Chang Young Park (1) (2)
    Sooraj Ravindran (1)
    Ja-Soon Jang (3)
    Yong-Ryun Jo (4)
    Bong-Joong Kim (4)
    Yong Tak Lee (1) (5)

    1. School of Information and Communications
    ; Gwangju Institute of Science and Technology ; 123 Cheomdangwagi-ro ; Buk-gu ; Gwangju ; 500-712 ; Republic of Korea
    2. Samsung Advanced Institute of Technology
    ; 130 Samsung-ro ; Yeongtong-gu ; Suwon ; Gyeonggi-do ; 443-803 ; Republic of Korea
    3. School of Electrical Engineering and Computer Science
    ; Department of Electronics ; Yeungnam University ; 280 Daehak-ro ; Gyeongsan ; Gyeongsangbuk-do ; 712-749 ; Republic of Korea
    4. School of Materials Science and Engineering
    ; Gwangju Institute of Science and Technology ; 123 Cheomdangwagi-ro ; Buk-gu ; Gwangju ; 500-712 ; Republic of Korea
    5. Advanced Photonics Research Institute
    ; Gwangju Institute of Science and Technology ; 123 Cheomdangwagi-ro ; Buk-gu ; Gwangju ; 500-712 ; Republic of Korea
  • 关键词:Core ; shell nanowire ; GaAs/GaInAs multiple ; quantum ; well ; Molecular beam epitaxy
  • 刊名:Nanoscale Research Letters
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:9
  • 期:1
  • 全文大小:1,708 KB
  • 参考文献:1. Wagner, RS, Ellis, WC (1964) Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4: pp. 89 CrossRef
    2. Kayes, BM, Atwater, HA, Lewis, NS (2005) Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J Appl Phys 97: pp. 114302 CrossRef
    3. Fang, Q, Yat, L, Silvija, G, Hong-Gyu, P, Yajie, D, Yong, D, Zhong Lin, W, Lieber, CM (2008) Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Mater 7: pp. 701 CrossRef
    4. Henneghien, A-L, Tourbot, G, Bruno, D, Lartigue, O, D茅si猫res, Y, Gerard, J-M (2011) Optical anisotropy and light extraction efficiency of MBE grown GaN nanowires epilayers. Opt Express 19: pp. 527 CrossRef
    5. Jabeen, F, Rubbini, S, Grillo, V, Felisari, L, Martelli, F (2008) Room temperature luminescent InGaAs/GaAs core-shell nanowires. Appl Phys Lett 93: pp. 083117 CrossRef
    6. Glas, F (2006) Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys Rev B 74: pp. 121302 CrossRef
    7. Wei, L, Charles, M, Lieber, (2006) Semiconductor nanowires. J Phys D Appl Phys 39: pp. R387 CrossRef
    8. Li, Y, Xiang, J, Qian, F, Grade膷ak, S, Yue, W, Yan, H, Blom, DA, Lieber, CM (2006) Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Lett 6: pp. 1468 CrossRef
    9. Heigoldt, M, Arbiol, J, Dan膷e, S, Rebled, JM, S貌nia, C-B, Gerhard, A, Francesca, P, Morante, JR, Morral, AFI (2009) Long range epitaxial growth of prismatic heterostructures on the facets of catalyst-free GaAs nanowires. J Mater Chem 19: pp. 840 CrossRef
    10. Morral, AFI, Dan膷e, S, Arbiol, J, Heigoldt, M, Morante, JR, Abstreiter, G (2008) Prismatic quantum heterostructures synthesized on molecular-beam epitaxy GaAs nanowires. Small 4: pp. 899 CrossRef
    11. Tatebayashi, J, Lin, A, Wong, PS, Hick, RF, Huffaker, DL (2010) Visible light emission from self-catalyzed GaInP/GaP core-shell double heterostructure nanowires on silicon. J Appl Phys 108: pp. 034315 CrossRef
    12. Dobrovolsky, A, Stehr, JE, Chen, SL, Kuang, YJ, Sukrittanon, S, Tu, CW, Chen, WM, Buyanova, IA (2012) Mechanism for radiative recombination and defect properties of GaP/GaNP core/shell nanowires. Appl Phys Lett 101: pp. 163106 CrossRef
    13. Ravi Kishore, VV, Partoens, B, Peeters, FM (2012) Electronic structure of InAs/GaSb core-shell nanowires. Phys Rev B 86: pp. 165439 CrossRef
    14. Yang, L, Motohisa, J, Fukui, T, Jia, LX, Zhang, L, Geng, MM, Pin, C, Liu, YL (2009) Fabry-P茅rot microcavity modes observed in the micro-photoluminescence spectra of the single nanowire with InGaAs/GaAs heterostructure. Opt Express 17: pp. 9337 CrossRef
    15. Dubrovskii, VG, Cirlin, GE, Soshnikov, IP, Tonkikh, AA, Sibirev, NV, Samsonenko, YB, Ustinov, VM (2005) Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy: theory and experiment. Phys Rev B 71: pp. 205325 CrossRef
    16. Kuang, YJ, Sukrittanon, S, Li, H, Tu, CW (2012) Growth and photoluminescence of self-catalyzed GaP/GaNP core/shell nanowires on Si(111) by gas source molecular beam epitaxy. Appl Phys Lett 100: pp. 053108 CrossRef
    17. Park, HD, Prokes, SM, Cammarata, RC (2005) Growth of epitaxial InAs nanowires in a simple closed system. Appl Phys Lett 87: pp. 063110 CrossRef
    18. Duan, X, Wang, J, Lieber, CM (2000) Synthesis and optical properties of gallium arsenide nanowires. Appl Phys Lett 76: pp. 1116 CrossRef
    19. Joyce, HJ, Qiang, G, Wong-Leung, J, Yong, K, Hoe Tan, H, Chennupati, J (2011) Tailoring GaAs, InAs and InGaAs nanowires for optoelectronic device applications. IEEE J of Select Topics in Quantum Electron 17: pp. 766 CrossRef
    20. Kizu, R, Yamaguchi, M, Amano, H (2013) Growth of GaAs nanowires on Si substrate by molecular beam epitaxy under alternating supply. Phys Status Solidi C 10: pp. 1365 CrossRef
    21. Moewe, M, Chuang, LC, Crankshaw, S, Kar Wei, N, Chang-Hasnain, C (2009) Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission. Opt Express 17: pp. 7831 CrossRef
    22. Jabeen, F, Grillo, V, Martelli, F, Rubini, S (2011) InGaAs/GaAs core-shell nanowires grown by molecular beam epitaxy. IEEE J of Select Topics in Quantum Electron 17: pp. 794 CrossRef
    23. Ihn, SG, Song, JI, Young-Hun, K, Lee, JY, Il-Ho, A (2007) Growth of GaAs nanowires on Si substrates using a molecular beam epitaxy. IEEE Trans Nanotechnol 6: pp. 384 CrossRef
    24. Bullis, WM (1966) Properties of gold in silicon. Sol Stat Elec 9: pp. 143 CrossRef
    25. Spirkoska, D, Abstreiter, G, Morral, AFI (2009) GaAs nanowires and related prismatic heterostructures. Semicond Sci Technol 24: pp. 113001 CrossRef
    26. Hei脽, M, Gustafsson, A, Conesa-Boj, S, Peir贸, F, Morante, JR, Abstreiter, G, Arbiol, J, Samuelson, L, Morral, AFI (2009) Catalyst-free nanowires with axial InxGa1-xAs/GaAs heterostructures. Nanotechnology 20: pp. 075603 CrossRef
    27. Heiss, M, Fontana, Y, Gustafsson, A, W眉st, G, Magen, C, O鈥橰egan, DD, Luo, JW, Ketterer, B, Conesa-Boj, S, Kuhlmann, AV, Houel, J, Russo-Averchi, E, Morante, JR, Cantoni, M, Marzari, N, Arbiol, J, Zunger, A, Warburton, RJ, Morral, AFI (2013) Self-assembled quantum dots in a nanowire system for quantum photonics. Nature Mater 12: pp. 439 CrossRef
    28. Heiss, M, Ketterer, B, Uccelli, E, Morante, JR, Arbiol, J, Morral, AFI (2011) In(Ga)As quantum dot formation on group-III assisted catalyst-free InGaAs nanowires. Nanotechnology 22: pp. 195601 CrossRef
    29. Torsten, R, Luysberg, M, Sch盲pers, T, Gr眉tzmacher, D, Lepsa, MI (2012) Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes. Nano Lett 12: pp. 5559 CrossRef
    30. Benedikt, B, Andreas, R, Marcello, S, Morral, AFI, Zweck, J, Schuh, D, Reiger, E (2010) Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy. Nanotechnology 21: pp. 435601 CrossRef
    31. Ambrosini, S, Fanetti, M, Grillo, V, Franciosi, A, Rubini, S (2011) Self-catalyzed GaAs nanowire growth on Si-treated GaAs(100) substrates. J Appl Phys 109: pp. 094306 CrossRef
    32. Fauzia, J, Vincenzo, G, Silvia, R, Faustino, M (2008) Self-catalyzed growth of GaAs nanowires on cleaved Si by molecular beam epitaxy. Nanotechnology 19: pp. 275711 CrossRef
    33. Shtrikman, H, Popovitz-Biro, R, Kretinin, A, Heiblum, M (2009) Stacking-faults-free zinc blende GaAs nanowires. Nano Lett 9: pp. 215 CrossRef
    34. Morin, S, Deveaud, B, Clerot, F, Fujiwara, K, Mitsunaga, K (1991) Capture of photoexcited carriers in a single quantum well with different confinement structures. IEEE J Quantum Elect 27: pp. 1669 CrossRef
    35. Ahtapodov, L, Todorovic, J, Olk, P, Mj氓land, T, Sl氓ttnes, P, Dheeraj, DL, van Helvoort, ATJ, Fimland, BO, Helge, W (2012) A story told by a single nanowire: optical properties of wurtzite GaAs. Nano Lett 12: pp. 6090 CrossRef
    36. Yoon, SF, Radhakrishnan, K, Li, HM (1993) Some properties of strained InxGa1-xAs/Al0.28Ga0.72As quantum well structures studied using low temperature photoluminescence. Superlattice Microst 14: pp. 79 CrossRef
    37. Murasaki, K, Fukatsu, S, Shiraki, Y, Ito, R (1992) Anomalies in photoluminescence linewidth of InGaAs/GaAs strained-layer quantum wells. Surf Sci 267: pp. 107 CrossRef
    38. Nazarenko, MV, Sibirev, NV, Ng, KW, Fan, R, Wai Son, K, Dubrovskii, VG, Chang-Hasnain, C (2013) Elastic energy relaxation and critical thickness for plastic deformation in the core-shell InGaAs/GaAs nanopillars. J Appl Phys 113: pp. 104311 CrossRef
    39. Raychaudhuri, S, Yu, ET (2006) Critical dimensions in coherently strained coaxial nanowire heterostructures. J Appl Phys 99: pp. 114308 CrossRef
    40. Choi HK: / 鈥淟ong-Wavelength Infrared Semiconductor Lasers鈥?/em>. Hoboken, New Jersey: John Wiley & Sons, Inc;
    41. Ouyang, G, Li, XL, Tan, X, Yang, GW (2008) Surface energy of nanowires. Nanotechnology 19: pp. 045709 CrossRef
    42. Fortuna, SA, Li, X (2010) Metal-catalyzed semiconductor nanowires: a review on the control of growth directions. Semicond Sci Technol 25: pp. 024005 CrossRef
    43. Gorbylev, VA, Petrov, AI, Petukhov, AB, Chel鈥檔i沫, AA (1993) Optimization of InGaAs/GaAs quantum-well strain-layer heterojunction laser structures. Quantum Electron 23: pp. 391 CrossRef
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700