Hybrid morphology dependence of CdTe:CdSe bulk-heterojunction solar cells
详细信息    查看全文
  • 作者:Furui Tan (1)
    Shengchun Qu (2)
    Weifeng Zhang (1)
    Zhanguo Wang (2)

    1. Key Laboratory of Photovoltaic Materials
    ; Department of Physics and Electronics ; Henan University ; Kaifeng ; 475004 ; People鈥檚 Republic of China
    2. Key Laboratory of Semiconductor Materials Science
    ; Institute of Semiconductors ; Chinese Academy of Sciences ; Beijing ; 100083 ; People鈥檚 Republic of China
  • 关键词:Hybrid bulk ; heterojunction solar cells ; CdSe ; CdTe
  • 刊名:Nanoscale Research Letters
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:9
  • 期:1
  • 全文大小:2,328 KB
  • 参考文献:1. Tang, J, Wang, X, Brzozowski, L, Aaron, D, Barkhouse, R, Debnath, R, Levina, L, Sargent, EH (2010) Schottky quantum dot solar cells stable in air under solar illumination. Adv Mater 22: pp. 1398-1402 CrossRef
    2. Ip, AH, Thon, SM, Hoogland, S, Voznyy, O, Zhitomirsky, D, Debnath, R, Levina, L, Rollny, LR, Carey, GH, Fischer, A, Kemp, KW, Kramer, IJ, Ning, Z, Labelle, AJ, Chou, KW, Amassian, A, Sargent, EH (2012) Hybrid passivated colloidal quantum dot solids. Nat Nanotechnol 7: pp. 577-582 CrossRef
    3. Kramer, IJ, Levina, L, Debnath, R, Zhitomirsky, D, Sargent, EH (2011) Solar cells using quantum funnels. Nano Lett 11: pp. 3701-3706 CrossRef
    4. Maraghechi, P, Labelle, AJ, Kirmani, AR, Lan, X, Adachi, MM, Thon, SM, Hoogland, S, Lee, A, Ning, Z, Fischer, A, Amassian, A, Sargent, EH (2013) The donor-supply electrode enhances performance in colloidal quantum dot solar cells. ACS Nano 7: pp. 6111-6116 CrossRef
    5. Dorothea, S, Sebastian, W, J眉rgen, P, Holger, B (2013) Towards depleted heterojunction solar cells with CuInS2 and ZnO nanocrystals. App Phys Lett 13: pp. 133902
    6. Zhang, J, Que, W, Shen, F, Liao, Y (2012) CuInSe2 nanocrystals/CdS quantum dots/ZnO nanowire arrays heterojunction for photovoltaic applications. Sol Energ Mater Sol C 10: pp. 30-34 CrossRef
    7. Li, L, Coates, N, Moses, D (2010) Solution-processed inorganic solar cell based on in situ synthesis and film deposition of CuInS2 nanocrystals. J Am Chem Soc 132: pp. 22-23 CrossRef
    8. Gur, I, Fromer, NA, Geier, ML, Alivisatos, AP (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310: pp. 462-465 CrossRef
    9. Townsend, TK, Yoon, W, Foos, EE, Tischler, JG (2014) Impact of nanocrystal spray deposition on inorganic solar cells. ACS Appl Mater Interfaces 10: pp. 7902-7909 CrossRef
    10. Debnath, R, Tang, J, Barkhouse, DA, Wang, X, Pattantyus-Abraham, AG, Brzozowski, L, Levina, L, Sargent, EH (2010) Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles. J Am Chem Soc 132: pp. 5952-5953 CrossRef
    11. Pattantyus-Abraham, AG, Kramer, IJ, Barkhouse, AR, Wang, XH, Konstantatos, G, Debnath, R, Levina, L, Raabe, I, Nazeeruddin, MK, Gratzel, M, Sargent, EH (2010) Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4: pp. 3374-3380 CrossRef
    12. Sablon, KA, Little, JW, Mitin, V, Sergeev, A, Vagidov, N, Reinhardt, K (2011) Strong enhancement of solar cell efficiency due to quantum dots with built-in charge. Nano Lett 11: pp. 2311-2317 CrossRef
    13. Tang, J, Liu, H, Zhitomirsky, D, Hoogland, S, Wang, X, Furukawa, M, Levina, L, Sargent, EH (2012) Quantum junction solar cells. Nano Lett 12: pp. 4889-4894 CrossRef
    14. Rath, AK, Bernechea, M, Martinez, L, Arquer, FPG, Osmond, J, Konstantatos, G (2012) Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells. Nat Photonics 6: pp. 529-534 CrossRef
    15. Tan, F, Qu, S, Li, F, Jiang, Q, Chen, C, Zhang, W, Wang, Z (2013) Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells. Nanoscale Res Lett 8: pp. 434 CrossRef
    16. Smita, D, Nikos, K, Dana, CO, David, SG, Garry, R (2010) Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. Nano Lett 10: pp. 239-242 CrossRef
    17. Krischan, FJ, Martin, S, J枚rg-Bernd, B, Phenwisa, N, Frank, R, Hans, WAL, Ines, D, Sybille, A, Ullrich, S, Klaus, M (2012) Efficiency enhanced hybrid solar cells using a blend of quantum dots and nanorods. Adv Funct Mater 22: pp. 397-404 CrossRef
    18. Manna, L, Milliron, DJ, Meisel, A, Scher, EC, Alivisatos, AP (2003) Controlled growth of tetrapod-branched inorganic nanocrystals. Nat Mater 2: pp. 382-385 CrossRef
    19. Yin, W, Ko, L, Bagaria, H, Asokan, S, Lina, K, Wong, M (2010) CdSe tetrapod synthesis using cetyltrimethylammonium bromide and heat transfer fluids. J Mater Chem 20: pp. 2474-2478 CrossRef
    20. Jeltsch, KF, Sch盲del, M, Bonekamp, J, Niyamakom, P, Rauscher, F, Lademann, HWA, Dumsch, I, Allard, S, Scherf, U, Meerholz, K (2012) Efficiency enhanced hybrid solar cells using a blend of quantum dots and nanorods. Adv Funct Mater 22: pp. 397-404 CrossRef
    21. Eom, SH, Baek, M, Park, H, Yan, L, Liu, S, You, W, Lee, S (2014) Roles of interfacial modifiers in hybrid solar cells: inorganic/polymer bilayer vs inorganic/polymer:fullerene bulk heterojunction. ACS Appl Mater Interfaces 6: pp. 803-810 CrossRef
    22. Adachi, M, Sakamoto, M, Jiu, J, Ogata, Y, Isoda, S (2006) Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J Phys Chem B 110: pp. 13872-13880 CrossRef
    23. Mora-Ser贸, I, Bisquert, J, Santiago, F, Garcia-Belmonte, G, Zoppi, G, Durose, K, Proskuryakov, Y, Oja, I, Belaidi, A, Dittrich, T, Tena-Zaera, R, Katty, A, L茅vy-Cl茅ment, C, Barrioz, V, Irvine, S (2006) Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells. Nano Lett 6: pp. 640-650 CrossRef
    24. Boix, PP, Lee, YH, Fabregat-Santiago, F, Im, SH, Mora-Sero, I, Bisquert, J, Seok, SI (2012) From flat to nanostructured photovoltaics: balance between thickness of the absorber and charge screening in sensitized solar cells. ACS Nano 6: pp. 873-880 CrossRef
    25. Wang, H, Liu, G, Li, X, Xiang, P, Ku, Z, Rong, Y, Xu, M, Liu, L, Hu, M, Yang, Y (2011) Highly efficient poly(3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon counter electrode. Energy Environ Sci 4: pp. 2025-2029 CrossRef
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
A nanocrystal thin-film solar cell operating on an exciton splitting pattern requires a highly efficient separation of electron-hole pairs and transportation of separated charges. A hybrid bulk-heterojunction (HBH) nanostructure providing a large contact area and interpenetrated charge channels is favorable to an inorganic nanocrystal solar cell with high performance. For this freshly appeared structure, here in this work, we have firstly explored the influence of hybrid morphology on the photovoltaic performance of CdTe:CdSe bulk-heterojunction solar cells with variation in CdSe nanoparticle morphology. Quantum dot (QD) or nanotetrapod (NT)-shaped CdSe nanocrystals have been employed together with CdTe NTs to construct different hybrid structures. The solar cells with the two different hybrid active layers show obvious difference in photovoltaic performance. The hybrid structure with densely packed and continuously interpenetrated two phases generates superior morphological and electrical properties for more efficient inorganic bulk-heterojunction solar cells, which could be readily realized in the NTs:QDs hybrid. This proved strategy is applicable and promising in designing other highly efficient inorganic hybrid solar cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700