The influence of Si as reactive bonding agent in the electrophoretic coatings of HA–Si–MWCNTs on NiTi alloys
详细信息    查看全文
  • 作者:Vida Khalili ; Jafar Khalil-Allafi…
  • 关键词:carbon nanotubes ; electrophoretic deposition ; hydroxyapatite ; reactive bonding ; silicon ; sintering
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:25
  • 期:2
  • 页码:390-400
  • 全文大小:5,906 KB
  • 参考文献:1.I. Zhitomirsky, Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects, Adv. Colloid Interface Sci., 2002, 97, p 297–317CrossRef
    2.P. Sarkar and P.S. Nicholson, Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics, J. Am. Ceram. Soc., 1996, 79(8), p 1987–2002CrossRef
    3.O.V.D. Biset and L.J. Vandeperre, Electrophoretic deposition of materials, Annu. Rev. Mater. Sci., 1999, 29, p 327–352CrossRef
    4.J. Cho, K. Konopka, K. Rozniatowski, E. Garcıa-Lecina, M.S.P. Shafferd, and A.R. Boccaccini, Characterisation of carbon nanotube films deposited by electrophoretic deposition, Carbon, 2009, 47, p 58–67CrossRef
    5.M. Javidi, S. Javadpour, M.E. Bahrololoom, and J. Ma, Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel, Mater. Sci. Eng. C, 2008, 28, p 1509–1515CrossRef
    6.Z.C. Wang, F. Chen, L.M. Huang, and C.J. Lin, Electrophoretic deposition and characterization of nano-sized hydroxyapatite particles, J. Mater. Sci. Lett., 2005, 40(18), p 4955–4957CrossRef
    7.J. Ma, C.H. Liang, L.B. Kong, and C. Wang, Colloidal characterization and electrophoretic deposition of hydroxyapatite on titanium substrate, J. Mater. Sci. Mater. Med., 2003, 14, p 797–801CrossRef
    8.P. Ducheyne, W.V. Raemdonck, J.C. Heughebaert, and M. Heughebaert, Structural analysis of hydroxyapatite coatings on titanium, Biomaterials, 1986, 7, p 97–103CrossRef
    9.M. Wei, A.J. Ruys, M.V. Swain, S.H. Kim, B.K. Milthorpe, and C.C. Sorrell, Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals, J. Mater. Sci. Mater. Med., 1999, 10, p 401–409CrossRef
    10.M.N. Rahaman, Ceramic processing and sintering, Marcel Dekker, New York, 1995
    11.A. Bansiddhi, T.D. Sargeant, S.I. Stupp, and D.C. Dunand, Porous NiTi for bone implants: a review, Acta Biomater., 2008, 4, p 773–782CrossRef
    12.M. Wei, A.J. Ruys, M.V. Swain, B.K. Milthorpe, and C.C. Sorrell, Hydroxyapatite-coated metals: interfacial reactions during sintering, J. Mater. Sci. Mater. Med., 2005, 16, p 101–106CrossRef
    13.K. Grandfield and I. Zhitomirsky, Electrophoretic deposition of composite hydroxyapatite–silica–chitosan coatings, Mater. Charact., 2008, 59, p 61–67CrossRef
    14.X. Pang, T. Casagrande, and I. Zhitomirsky, Electrophoretic deposition of hydroxyapatite–CaSiO3–chitosan composite coatings, J. Colloid Interface Sci., 2009, 330, p 323–329CrossRef
    15.D. Zhitomirsky, H.A. Roether, A.R. Boccaccini, and I. Zhitomirsky, Electrophoretic deposition of bioactive glass/polymer composite coatings with and without HA nanoparticle inclusions for biomedical applications, J. Mater. Process Technol., 2009, 209, p 1853–1860CrossRef
    16.M. Roy, A. Bandyopadhyay, and S. Bose, Laser surface modification of electrophoretically deposited hydroxyapatite coating on titanium, J. Am. Ceram. Soc., 2008, 91(11), p 3517–3521CrossRef
    17.W. Suchanek, M. Yashima, M. Kakihana, and M. Yoshimura, Hydroxyapatite ceramics with selected sintering additives, Biomaterials, 1997, 18, p 923–933CrossRef
    18.T. Goto, N. Wakamatsu, H. Kamemizu, M. Iijima, Y. Doi, and Y. Moriwaki, Sintering mechanism of hydroxyapatite by addition of lithium phosphate, J. Mater. Sci. Mater. Med., 1991, 2, p 149–152CrossRef
    19.J.B. Park and J.D. Bronzino, Biomaterials: principles and applications, 1st ed., CRC Press, USA, 2002CrossRef
    20.A.A. White and S.M. Best, Hydroxyapatite–carbon nanotube composites for biomedical applications: a review, Int. J. Appl. Ceram. Technol., 2007, 4(1), p 1–13CrossRef
    21.X. Feng-juan, Z. Ying, and Y. Li-jiang, Electrophoretic deposition of titanium/silicon-substituted hydroxyapatite composite coating and its interaction with bovine serum albumin, Trans. Nonferrous Metals Soc. China, 2009, 19, p 125–130CrossRef
    22.J.C. Huang, Y.J. Ni, and Z.C. Wang, Preparation of hydroxyapatite functionally gradient coating on titanium substrate using a combination of electrophoretic deposition and reaction bonding process, Surf. Coat. Technol., 2010, 204, p 3387–3392CrossRef
    23.V. Khalili, J. Khalil-Allafi, and H. Maleki-Ghaleh, Characterisation of HA–Si composite coatings on NiTi for biomedical applications, Surf. Eng., 2014, 30, p 212–217CrossRef
    24.B. Zhang and C.T. Kwok, Hydroxyapatite-anatase-carbon nanotube nanocomposite coatings fabricated by electrophoretic codeposition for biomedical applications, J. Mater. Sci. Mater. Med., 2011, 22, p 2249–2259CrossRef
    25.D. Lahiri, V. Singh, A.K. Keshri, S. Seal, and A. Agarwal, Carbon nanotube toughened hydroxyapatite by spark plasma sintering: microstructural evolution and multiscale tribological properties, Carbon, 2010, 48, p 3103–3120CrossRef
    26.C. Kaya, F. Kaya, J. Cho, J.A. Roether, and A.R. Boccaccini, Carbon nanotube-reinforced hydroxyapatite coatings on metallic implants using electrophoretic deposition, Key Eng. Mater., 2009, 412, p 93–97CrossRef
    27.E. Landi, A. Tampieri, G. Celotti, and S. Sprio, Densification behavior and mechanisms of synthetic hydroxyapatites, J. Eur. Ceram. Soc., 2000, 20, p 2377–2387CrossRef
    28.X.W. Li, H.Y. Yasuda, and Y. Umakoshi, Bioactive ceramic composites sintered from hydroxyapatite and silica at 1200 °C: preparation, microstructures and in vitro bone-like layer growth, J. Mater. Sci. Mater. Med., 2006, 17, p 573–581CrossRef
    29.C. Ergun, R. Doremus, and W. Lanford, Hydroxyapatite and titanium: interfacial reactions, J. Biomed. Mater. Res., 2003, 65A(3), p 336–343CrossRef
    30.S.K. Yadav, T. Bera, P.S. Saxena, A.K. Maurya, R.S. Garbyal, R. Vajtai, P. Ramachandrarao, and A. Srivastava, MWCNTs as reinforcing agent to the Hap–Gel nanocomposite for artificial bone grafting, J. Biomed. Mater. Res., 2009, 93A(3), p 886–896
    31.B.E. Warren, X-ray diffraction, Dover publications, INC., New York, 1990
    32.M. Wei, A.J. Ruys, B.K. Milthorpe, C.C. Sorrell, and J.H. Evans, Electrophoretic deposition of hydroxyapatite coatings on metal substrates: a nanoparticulate dual-coating approach, J. Sol–Gel Sci. Technol., 2001, 21, p 39–48CrossRef
    33.C. Lin, H. Han, F. Zhang, and A. Li, Electrophoretic deposition of HA/MWNTs composite coating for biomaterial applications, J. Mater. Sci. Mater. Med., 2008, 19, p 2569–2574CrossRef
    34.X.F. Xiao and R.F. Liu, Effect of suspension stability on electrophoretic deposition of hydroxyapatite coatings, Mater. Lett., 2006, 60, p 2627–2632CrossRef
    35.F. Chen, W.M. Lam, C.J. Lin, G.X. Qiu, Z.H. Wu, K.D.K. Luk, and W.W. Lu, Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells, J. Biomed. Mater. Res B Appl. Biomater., 2007, 82, p 183–191CrossRef
    36.O. Albayrak, O. El-Atwani, and S. Altintas, Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition, Surf. Coat. Technol., 2008, 202, p 2482–2487CrossRef
    37.C.T. Kwok, P.K. Wong, F.T. Cheng, and H.C. Man, Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4 V fabricated by electrophoretic deposition, Appl. Surf. Sci., 2009, 255, p 6736–6744CrossRef
    38.H. Farnoush, J. Aghazadeh-Mohandesia, D. Haghshenas-Fatmehsari, and F. Moztarzadeh, Modification of electrophoretically deposited nano-hydroxyapatite coatings by wire brushing on Ti–6Al–4 V substrates, Ceram. Int., 2012, 38, p 4885–4893CrossRef
    39.D. Qiu, A. Wang, and Y. Yin, Characterization and corrosion behavior of hydroxyapatite/zirconia composite coating on NiTi fabricated by electrochemical deposition, Appl. Surf. Sci., 2010, 257, p 1774–1778CrossRef
    40.I.H. Oh, N. Nomura, A. Chiba, Y. Murayama, N. Masahashi, B.T. Lee, and S. Hanada, Microstructures and bond strengths of plasma-sprayed hydroxyapatite coatings on porous titanium substrates, J. Mater. Sci. Mater. Med., 2005, 16, p 635–640CrossRef
    41.D. Lahiri, S. Ghosh, and A. Agarwal, Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: a review, Mater. Sci. Eng. C, 2012, 32, p 1727–1758CrossRef
  • 作者单位:Vida Khalili (1) (2)
    Jafar Khalil-Allafi (1)
    Hossein Maleki-Ghaleh (1)
    Alexander Paulsen (3)
    Jan Frenzel (3)
    Gunther Eggeler (3)

    1. Research Center for Advanced Materials and Mineral Processing, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
    2. Department of Mechanical Engineering, University of Bonab, Velayat Highway, P.O.Box: 5551761167, Bonab, Iran
    3. Institute for Materials Science, Faculty of Mechanical Engineering, Ruhr-University Bochum, 44801, Bochum, Germany
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
文摘
In this study, different composite coatings with 20 wt.% silicon and 1 wt.% multi-walled carbon nanotubes of hydroxyapatite were developed on NiTi substrate using a combination of electrophoretic deposition and reactive bonding during the sintering. Silicon was used as reactive bonding agent. During electrophoretic deposition, the constant voltage of 30 V was applied for 60 s. After deposition, samples were dried and then sintered at 850 °C for 1 h in a vacuum furnace. SEM, XRD and EDX were used to characterize the microstructure, phase and elemental identification of coatings, respectively. The SEM images of the coatings reveal a uniform and compact structure for HA–Si and HA–Si–MWCNTs. The presence of silicon as a reactive bonding agent as well as formation of new phases such as SiO2, CaSiO3 and Ca3SiO5 during the sintering process results in compact coatings and consumes produced phases from HA decomposition. Formation of the mentioned phases was confirmed using XRD analysis. The EDX elemental maps show a homogeneous distribution of silicon all over the composite coatings. Also, the bonding strength of HA–Si–MWCNTs coating is found to be 27.47 ± 1 MPa. Keywords carbon nanotubes electrophoretic deposition hydroxyapatite reactive bonding silicon sintering

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700