Effect of Electrophoretic Deposition Parameters on the Corrosion Behavior of Hydroxyapatite-Coated Cobalt–Chromium Using Response Surface Methodology
详细信息    查看全文
  • 作者:Mostafa Rezazadeh Shirdar ; Sudin Izman…
  • 关键词:Cobalt–chromium ; Electrophoretic deposition ; Hydroxyapatite ; Response surface methodology ; Electrochemical corrosion behavior
  • 刊名:Arabian Journal for Science and Engineering
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:41
  • 期:2
  • 页码:591-598
  • 全文大小:2,155 KB
  • 参考文献:1.Rahaman M.N., Yao A., Sonny Bal B., Garino J.P., Ries M.D.: Ceramics for prosthetic hip and knee joint replacement. J. Am. Ceram. Soc. 90(7), 1965–1988 (2007)CrossRef
    2.Zeh A., Planert M., Siegert G., Lattke P., Held A., Hein W.: Release of cobalt and chromium ions into the serum following implantation of the metal-on-metal maverick-type artificial lumbar disc (medtronic sofamor danek). Spine 32(3), 348–352 (2007)CrossRef
    3.Michael P., Sievert C., Andermatt D., Frigg R., Kronen P., Klein K., Stübinger S. et al.: Osseointegration and biocompatibility of different metal implants—a comparative experimental investigation in sheep. BMC Musculoskelet. Disord. 13(1), 32 (2012)MATH CrossRef
    4.Mohedano M., Matykina E., Arrabal R., Pardo A., Merino M.C.: Metal release from ceramic coatings for dental implants. Dental Mater. 30, e28–e40 (2014)CrossRef
    5.Kheimehsari, H.; Izman, S.; Shirdar, M.R.: Effects of HA-coating on the surface morphology and corrosion behavior of a Co–Cr-based implant in different conditions. J. Mater. Eng. Perform. 24(6), 2294–2302 (2015)
    6.Aksakal B., Gavgali M., Dikici B.: The effect of coating thickness on corrosion resistance of hydroxyapatite coated Ti6Al4V and 316L SS implants. J. Mater. Eng. Perform. 19(6), 894–899 (2010)CrossRef
    7.Sarkar A., Kannan S.: In situ synthesis, fabrication and Rietveld refinement of the hydroxyapatite/titania composite coatings on 316L SS. Ceram. Int. 40(5), 6453–6463 (2014)CrossRef
    8.Taheri, M.M.; Abdul Kadir, M.R.; Shokuhfar, T.; Hamlekhan, A.; Assadian, M.; Shirdar, M.R.; Mirjalili, A.: Surfactant-assisted hydrothermal synthesis of Fluoridated Hydroxyapatite nanorods. Ceram. Int. (2015). doi:10.​1016/​j.​ceramint.​2015.​04.​061
    9.Goodman S. B., Yao Z., Keeney M., Yang F.: The future of biologic coatings for orthopaedic implants. Biomaterials 34(13), 3174–3183 (2013)CrossRef
    10.Sun R.X., Lu Y.P., Li M.S.: Formation of hollow spheres of hydroxyapatite in plasma spraying. Surf. Eng. 19(5), 392–394 (2003)CrossRef
    11.Ma J., Wong H., Kong L.B., Peng K.W.: Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology 14(6), 619 (2003)CrossRef
    12.Thair L., Ismaeel T., Ahmed B., Swadi A.K.: Development of apatite coatings on Ti-6Al-7Nb dental implants by biomimetic process and EPD: in vivo studies. Surf. Eng. 27(1), 11–18 (2011)CrossRef
    13.Sureshbabu S., Komath M., Shibli S.M.A., Varma H.K.: Biomimetic deposition of hydroxyapatite on titanium with help of sol–gel grown calcium pyrophosphate prelayer. Mater. Res. Innov. 15(3), 178–184 (2011)CrossRef
    14.Arafat A., Idris M.H., Abdul Kadir M.R., Jafari H.: Characterisation of calcium phosphate coating on investment cast 316L stainless steel. Mater. Res. Innov. 18(s2), 886–891 (2014)CrossRef
    15.Jafari S., Taheri M.M., Idris J.: Bioactive Coating on Stainless Steel 316 L through sol–gel Method. Adv. Mater. Res. 383, 3944–3948 (2012)
    16.Jafari S., Taheri M.M., Idris J.: Thick hydroxyapatite coating on Ti-6Al-4V through sol–gel method. Adv. Mater. Res. 341, 48–52 (2012)
    17.Chen F., Lam W.M., Lin C.J., Qiu G.X., Wu Z.H., Luk K.D.K., Lu W.W.: Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells. J. Biomed. Mater. Res. Part B Appl. Biomater. 82(1), 183–191 (2007)CrossRef
    18.Eliaz N., Sridhar T.M., Kamachi Mudali U., Raj Baldev: Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic applications. Surf. Eng. 21(3), 238–242 (2005)CrossRef
    19.Besra L., Liu M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Progr. Mater. Sci. 52(1), 1–61 (2007)CrossRef
    20.Bhawanjali S., Revathi A., Popat K.C., Geetha M.: Surface modification of Ti-13Nb-13Zr and Ti-6Al-4V using electrophoretic deposition (EPD) for enhanced cellular interaction. Mater. Technol. Adv. Biomater. 29(B1), B54–B58 (2014)
    21.Wang B., Huang P., Ou C., Li K., Yan B., Lu W.: In vitro corrosion and cytocompatibility of ZK60 magnesium alloy coated with hydroxyapatite by a simple chemical conversion process for orthopedic applications. Int. J. Mol. Sci. 14(12), 23614–23628 (2013)CrossRef
    22.Lu W., Chen Z., Huang P., Yan P., Yan B.: Microstructure, corrosion resistance and biocompatibility of biomimetic HA-based Ca-P coatings on ZK60 magnesium alloy. Int. J. Electrochem. Sci. 7, 12668–12679 (2012)
    23.Abdeltawab A.A., Shoeib M.A., Mohamed S.G.: Electrophoretic deposition of hydroxyapatite coatings on titanium from dimethylformamide suspensions. Surf. Coat. Technol. 206(1), 43–50 (2011)CrossRef
    24.Kollath V.O., Chen Q., Closset R., Luyten J., Traina K., Mullens S., Boccaccini A.R., Cloots R.: AC vs DC electrophoretic deposition of hydroxyapatite on titanium. J. Eur. Ceram. Soc. 33(13), 2715–2721 (2013)CrossRef
    25.Hsiang S.-H., Lin Y.-W.: Optimization of the extrusion process for magnesium alloy sheets using the Fuzzy-based Taguchi method. Arab. J. Sci. Eng. 34(1), 175–185 (2009)MathSciNet
    26.Eşme U.: Application of Taguchi method for the optimization of resistance spot welding process. Arab. J. Sci. Eng. 34(2), 519 (2009)
    27.Bakhsheshi-Rad H.R., Idris M.H., Abdul-Kadir M.R.: Synthesis and in vitro degradation evaluation of the nano-HA/MgF 2 and DCPD/MgF 2 composite coating on biodegradable Mg–Ca–Zn alloy. Surf. Coat. Technol. 222, 79–89 (2013)CrossRef
    28.Shirdar, M.R.; Izman, S.; Taheri, M.M.; Assadian, M.; Kadir, M.R.A.: Effect of post-treatment techniques on corrosion and wettability of hydroxyapatite-coated Co–Cr–Mo alloy. Arab. J. Sci. Eng. 40(4), 1197–1203 (2015)
    29.Saud S.N., Hamzah E., Abubakar T., Bakhsheshi-Rad H.R., Farahany S., Abdolahi A., Taheri M.M.: Influence of Silver nanoparticles addition on the phase transformation, mechanical properties and corrosion behaviour of Cu–Al–Ni shape memory alloys. J. Alloys Compd. 612, 471–478 (2014)CrossRef
    30.Montgomery D.C.: Design and Analysis of Experiments, 7th edn. Wiley, Singapore (2009)
    31.Garg M.P., Jain A., Bhushan G.: Multi-objective Optimization of Process Parameters in Wire Electric Discharge Machining of Ti-6-2-4-2 Alloy. Arab. J. Sci. Eng. 39(2), 1465–1476 (2014)CrossRef
    32.Noordin M.Y., Venkatesh V.C., Sharif S., Elting S., Abdullah A.: Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. J. Mater. Process. Technol. 145(1), 46–58 (2004)CrossRef
    33.Assadian, M.; Rezazadeh Shirdar, M.; Idris, Mohd.H.; Izman, S.; Almasi, D.; Taheri, M.M.; Abdul Kadir, M.R.: Optimisation of electrophoretic deposition parameters in coating of metallic substrate by hydroxyapatite using response surface methodology. Arab. J. Sci. Eng. 40(3), 923–933 (2015)
    34.Shirdar M.R. et al.: The application of surface response methodology to the pretreatment of WC substrates prior to diamond coating. J. Mater. Eng. Perform. 23(1), 13–24 (2014)CrossRef
    35.Dorozhkin S.V.: A review on the dissolution models of calcium apatites. Progr. Cryst. Growth Charact. Mater. 44(1), 45–61 (2002)CrossRef
    36.Jamesh M., Kumar S., Sankara Narayanan T.S.N.: Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications. J. Coat. Technol. Res. 9(4), 495–502 (2012)CrossRef
    37.Meejoo S., Maneeprakorn W., Winotai P.: Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochim. Acta 447(1), 115–120 (2006)CrossRef
    38.Kuo M.C., Yen S.K.: The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater. Sci. Eng. C 20(1), 153–160 (2002)CrossRef
  • 作者单位:Mostafa Rezazadeh Shirdar (1)
    Sudin Izman (1)
    Mohammad Mahdi Taheri (2)
    Mahtab Assadian (2)
    Mohammed Rafiq Abdul Kadir (3)

    1. Department of Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
    2. Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
    3. Medical Implant Technology Group (MEDITEG), Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor Bahru, Johor, Malaysia
  • 刊物类别:Engineering
  • 刊物主题:Engineering, general
    Mathematics
    Science, general
  • 出版者:Springer Berlin / Heidelberg
文摘
Cobalt–chromium (Co–Cr)-based alloys have been used extensively as medical implants, but the ion release and the corrosion products can affect their mechanical integrity and biocompatibility. One of the solutions is to surface coat the substrate with hydroxyapatite via electrophoretic deposition technique. Two variables—pH of electrolyte and current density—were used to examine the electrochemical behavior of the coated sample. An experimental strategy was developed based on the response surface methodology together with the analysis of variance to verify the precision of the mathematical models and their relative parameters. Close agreement was observed between the predicted models and the experimental results. The pH value of electrolyte was a more significant factor than current density in increasing the corrosion potential (E corr) of the substrate. The maximum E corr was obtained with a current density of 12 mA cm−2 and a pH value of 4.71. Keywords Cobalt–chromium Electrophoretic deposition Hydroxyapatite Response surface methodology Electrochemical corrosion behavior

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700