Electrophoretic Deposition of Cu-SiO2 Coatings by DC and Pulsed DC for Enhanced Surface-Mechanical Properties
详细信息    查看全文
  • 作者:H. S. Maharana ; Suprabha Lakra ; S. Pal…
  • 关键词:electrical conductivity ; electrophoretic deposition ; ultrafine SiO2 ; wear
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:25
  • 期:1
  • 页码:327-337
  • 全文大小:3,086 KB
  • 参考文献:1.A.F. Zimmerman, D.G. Clark, K.T. Aust, and U. Erb, Pulse Electrodeposition of Ni–SiC Nanocomposite, Mater. Lett., 2002, 52, p 85–90CrossRef
    2.L. Chen, L. Wang, Z. Zeng, and T. Xu, Influence of Pulse Frequency on the Microstructure and Wear Resistance of Electrodeposited Ni-Al2O3 Composite Coatings, Surf. Coat. Technol., 2006, 201, p 599–605CrossRef
    3.S. Ramalingam, V.S. Muralidharan, and A. Subramania, Electrodeposition and Characterization of Cu-TiO2 Nanocomposite Coatings, J. Solid State Electrochem., 2009, 13, p 1777–1783CrossRef
    4.B.F. Levin, J.N. Dupont, and A.R. Marder, The Effect of Second Phase Volume Fraction on the Erosion Resistance of Metal-Matrix Composites, Wear, 2000, 238, p 160–167CrossRef
    5.K.H. Hou, M.D. Ger, L.M. Wang, and S.T. Ke, The Wear Behaviour of Electro-Codeposited Ni–SiC Composites, Wear, 2002, 253, p 994–1003CrossRef
    6.P. Gyftou, M. Stroumbouli, E.A. Pavlatou, and N. Spyrellis, Electrodeposition of Ni/SiC Composites by Pulse Electrolysis, Trans. IMF, 2000, 80(3), p 88–91
    7.M.S. Chandrasekar and M. Pushpavanam, Pulse and Pulse Reverse Plating-Conceptual, Advantages and Applications, Electrochim. Acta, 2008, 53, p 3313–3322CrossRef
    8.J.W. Kaczmar, K. Pietrzak, and W. Włosinski, The Production and Application of Metal Matrix Composite Materials, J. Mater. Process. Technol., 2000, 106, p 58–67CrossRef
    9.G. Wu, N. Li, D. Zhou, and K. Mitsuo, Electrodeposited Co-Ni-AlO Composite Coatings, Surf. Coat. Technol., 2004, 176, p 157–164CrossRef
    10.C. Buelens, J.P. Celis, and J.R. Roos, Electrochemical Aspects of the Codeposition of Gold and Copper with Inert Particles, J. Appl. Electrochem., 1983, 13, p 541–548CrossRef
    11.C.C. Lee and C.C. Wan, A Study of the Composite Electrodeposition of Copper with Alumina Powder, J. Electrochem. Soc., 1988, 135(8), p 1930–1933CrossRef
    12.E.S. Chen, G.R. Lakshminarayanan, and F.K. Sautter, The Codeposition of Alumina and Titania with Copper, Metall. Trans., 1971, 2, p 937–942CrossRef
    13.J.R. Groza and J.C. Gibeling, Principles of Particle Selection for Dispersion-Strengthened Copper, Mater. Sci. Eng. A, 1993, 171, p 115–125CrossRef
    14.J.L. Stojak and J.B. Talbot, Effect of Particles on Polarization During Electrodeposition Using a Rotating Cylinder Electrode, J. Appl. Electrochem., 2001, 31, p 559–564CrossRef
    15.H. Li, Y. Wan, H. Liang, X. Li, Y. Huang, and F. He, Composite Electroplating of Cu–SiO2 Nano Particles on Carbon Fiber Reinforced Epoxy Composites, Appl. Surf. Sci., 2009, 256, p 1614–1616CrossRef
    16.J.F. Shackelford and W. Alexander, Materials Science and Engineering Handbook, CRC Press, Boca Raton, 2000, p 102-105, 984-989.
    17.T.H. Dunning Jr. and P.J. Hay, Modern Theoretical Chemistry, Vol 3 H.F. Schaefer III, Ed., Vol. Plenum, New York, 1977, p 1-28
    18.M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision D0.1, Gaussian, Inc., Wallingford, 2009
    19.A. Ashok, H.S. Maharana, and A. Basu, Effect of Electro-Codeposition Parameters on Surface Mechanical Properties of Cu-TiO2 Composite Coating, Bull. Mater. Sci., 2015, 38, p 335–342CrossRef
    20.N. Ibl, J.C. Puippe, and H. Angerer, Electrocrystallization in Pulse Electrolysis, Surf. Technol., 1978, 6, p 287–300CrossRef
    21.S.R. Allahkaram, S. Golroh, and M. Mohammadalipour, Properties of Al2O3 Nano-Particle Reinforced Copper Matrix Composite Coatings Prepared by Pulse and Direct Current Electroplating, Mater. Des., 2011, 32, p 4478–4484CrossRef
    22.M. Braunovic, V.V. Konchits, and N.K. Myshkin, Electrical Contacts, CRS Press, USA, 2006, p 44–45CrossRef
    23.G.E. Dieter, Mechanical Metallurgy, McGraw Hill, Singapore, 1988
    24.J.M. Zhang, Y. Zhang, and K.W. Xu, Dependence of Stresses and Strain Energies on Grain Orientations in FCC Metal Films, J. Cryst. Growth, 2005, 285, p 427–435CrossRef
    25.A.K. Pradhan and S. Das, Pulse-Reverse Electrodeposition of Cu-SiC Nanocomposite Coating: Effect of Concentration of SiC in the Electrolyte, J. Alloy Compd., 2014, 590, p 294–302CrossRef
    26.M. Eslami, H. Saghafian, F. Golestani-fard, and A. Robin, Effect of Electrodeposition Conditions on the Properties of Cu-Si3N4 Composite Coatings, Appl. Surf. Sci., 2014, 300, p 129–140CrossRef
    27.V. Mangam, S. Bhattacharya, K. Das, and S. Das, Friction and Wear Behavior of Cu-CeO2 Nanocomposite Coatings Synthesized by Pulsed Electrodeposition, Surf. Coat. Technol., 2010, 205, p 801–805CrossRef
  • 作者单位:H. S. Maharana (1)
    Suprabha Lakra (1)
    S. Pal (1)
    A. Basu (1)

    1. Department of Metallurgical and Materials Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Characterization and Evaluation Materials
    Materials Science
    Tribology, Corrosion and Coatings
    Quality Control, Reliability, Safety and Risk
    Engineering Design
  • 出版者:Springer New York
  • ISSN:1544-1024
文摘
The present study explored the possibilities of improvement in the surface-mechanical properties of electrodeposited Cu-SiO2 composite coating and its underlying mechanism. Composite coatings were developed using SiO2-dispersed acidic copper sulfate electrolyte by direct current and pulse-current electro-codeposition techniques with variation of pulse frequencies at a fixed duty cycle. X-ray diffraction analysis of the coatings revealed information regarding the presence of various phases and crystallographic orientations of the deposited Cu matrix. Scanning electron microscopy and energy dispersive x-ray spectroscopy techniques were used to investigate the surface morphology and chemical composition of the coatings, respectively, and it was observed that SiO2 particles were uniformly distributed in the composite coatings. Surface roughness was found to be reduced with the increasing pulse frequency. The Vickers microhardness and ball-on-plate wear study showed improvement in surface-mechanical properties due to the formation of fine Cu matrix, dispersion strengthening due to homogeneously distributed SiO2 particles, and the preferred orientation of the Cu matrix. Marginal decrease in electrical conductivity with the increasing SiO2 content and pulse frequency was observed from the four-probe electrical conductivity measurement technique.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700