Fabrication and stimuli response of rice husk-based microcrystalline cellulose particle suspension under electric fields
详细信息    查看全文
  • 作者:Bomi Sim ; Dong Hun Bae ; Hyoung Jin Choi ; Kisuk Choi ; Md. Sakinul Islam…
  • 关键词:Electrorheology ; Microcrystalline cellulose ; Rice husk ; Suspension
  • 刊名:Cellulose
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:23
  • 期:1
  • 页码:185-197
  • 全文大小:2,026 KB
  • 参考文献:Adel AM, El–Wahab ZHA, Ibrahim AA, Al–Shemy MT (2010) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresour Technol 101:4446–4455. doi:10.​1016/​j.​biortech.​2010.​01.​047 CrossRef
    Adinugraha MP, Marseno DW, Haryadi (2005) Synthesis and characterization of sodium carboxymethylcellulose from cavendish banana pseudo stem (Musa cavendishii LAMBERT). Carbohydr Polym 62:164–169CrossRef
    Ahn B (2003) Electrorheological properties of phosphoric ester cellulose electrorheological suspensions with activation of dispersed particles. Polym J 35:23–29. doi:10.​1295/​polymj.​35.​23 CrossRef
    Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compost 24:1259–1268. doi:10.​1177/​0731684405049864​ CrossRef
    Carlin B (2008) Pharmaceutical dosage forms: tablets. In: Augsburger LL, Hoag SW (eds) Direct compression and the role of filler-binders. CRC Press, London, pp 173–216
    Chin BD, Winter HH (2002) Field-induced gelation, yield stress, and fragility of an electro-rheological suspension. Rheol Acta 41:265–275. doi:10.​1007/​s00397-001-0212-0 CrossRef
    Choi HJ, Hong CH, Jhon MS (2007) Cole–Cole analysis on dielectric spectra of electrorheological suspensions. Int J Mod Phys 21:4974–4980CrossRef
    Davies JL, Blagbrough IS, Staniforth JN (1998) Electrorheological behaviour at low applied electric fields of microcrystalline cellulose in BP oils. Chem Commun 19:2157–2158. doi:10.​1039/​a806533k CrossRef
    Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol 102:1988–1997. doi:10.​1016/​j.​biortech.​2010.​09.​030 CrossRef
    Fang FF, Kim JH, Choi HJ (2009) Synthesis of core–shell structured PS/Fe3O4 microbeads and their magnetorheology. Polymer 50:2290–2293. doi:10.​1016/​j.​polymer.​2009.​03.​023 CrossRef
    Fengel D, Wegener G (1984) Wood chemistry, ultrastructure, reactions. Walter de Hruyter, Berlin. doi:10.​1002/​pol.​1985.​130231112
    Hato M, Zhang K, Ray S, Choi HJ (2011) Rheology of organoclay suspension. Colloid Polym Sci 289:1119–1125. doi:10.​1007/​s00396-011-2438-4 CrossRef
    Hong CH, Sung JH, Choi HJ (2009) Effects of medium oil on electroresponsive characteristics of chitosan suspensions. Colloid Polym Sci 5:583–589. doi:10.​1007/​s00396-009-2006-3 CrossRef
    Ikazaki F, Kawai A, Uchida K, Kawakami T, Edamura K, Sakurai K, Anzai H, Asako Y (1998) Mechanisms of electrorheology: the effect of the dielectric property. J Phys D 31:336. doi:10.​1088/​0022-3727/​31/​3/​014 CrossRef
    Jackson MG (1997) Review article: the alkali treatment of straws. Anim Feed Sci Technol 2:105–130. doi:10.​1016/​0377-8401(77)90013-X CrossRef
    Kim SG, Kim JW, Jang WH, Choi HJ, Jhon MS (2001) Electrorheological characteristics of phosphate cellulose-based suspensions. Polymer 42:5005–5012. doi:10.​1016/​S0032-3861(00)00887-9 CrossRef
    Klingenberg DJ, van Swol F, Zukoski CF (1991) The small shear rate response of electrorheological suspensions. I. Simulation in the point–dipole limit. J Chem Phys 94:6160–6169. doi:10.​1063/​1.​460402 CrossRef
    Lee S, Uhm C, Seong M, Oh J, Choi S (2014) Repulsive force control of minimally invasive surgery robot associated with three degrees of freedom electrorheological fluid-based haptic master. Proc Inst Mech Eng C J Mech Eng Sci 228:1606–1621. doi:10.​1177/​0954406213508935​ CrossRef
    Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573. doi:10.​1016/​j.​carbpol.​2011.​08.​022 CrossRef
    Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025. doi:10.​1002/​app.​21779 CrossRef
    Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262CrossRef
    Nada AMA, Hassan ML (2003) Phosphorylated cation-exchangers from cotton stalks and their constituents. J Appl Polym Sci 89:2950–2956. doi:10.​1002/​app.​12408 CrossRef
    Nada AMA, Hassan ML (2006) Ion exchange properties of carboxylated bagasse. J Appl Polym Sci 102:1399–1404. doi:10.​1002/​app.​24255 CrossRef
    Nilsson M, Mihranyan A, Valizadeh S, Stromme M (2006) Mesopore structure of microcrystalline cellulose tablets characterized by nitrogen adsorption and SEM: the influence on water-induced ionic conduction. J Phys Chem B 110:15776–15781CrossRef
    Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Comp Sci Technol 66:2776–2784. doi:10.​1016/​j.​compscitech.​2006.​03.​002 CrossRef
    Pan X, McKinley GH (1997) Structural limitation to the material strength of electrorheological fluids. Appl Phys Lett 71:333–335. doi:10.​1063/​1.​119530 CrossRef
    Pan ZW, Shang YL, Li JR, Gao S, Shang YL, Huang RL, Wang J, Zhang SH, Zhang YJ (2006) A new class of electrorheological material: synthesis and electrorheological performance of rare earth complexes of phosphate cellulose. J Mater Sci 41:355–362. doi:10.​1007/​s10853-005-2329-5 CrossRef
    Park BJ, Kim TH, Choi HJ, Lee JH (2007) Emulsion polymerized polystyrene/montmorillonite nanocomposite and its viscoelastic characteristics. J Macromol Sci B 46:341–354. doi:10.​1080/​0022234060115821​7 CrossRef
    Prasad R, Pasanovic-Zujo V, Gupta RK, Cser F, Bhattacharya SN (2004) Morphology of EVA based nanocomposites under shear and extensional flow. Polym Eng Sci 44:1220–1230. doi:10.​1002/​pen.​20117 CrossRef
    Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibres: effect of preparation conditions on their thermal and morphological behaviour. Carbohydr Polym 81:83–92. doi:10.​1016/​j.​carbpol.​2010.​01.​059 CrossRef
    Samir MASA, Alloin F, Paillet M, Dufresne A (2004a) Tangling effect in fibrillated cellulose reinforced nanocomposites. Macromolecules 37:4313–4316. doi:10.​1021/​ma035939u CrossRef
    Samir MASA, Alloin F, Sanchez JY, Dufresne A (2004b) Cellulose nanocrystals reinforced poly (oxyethylene). Polymer 45:4149–4157CrossRef
    Schwarzl FR (1975) Numerical calculation of stress relaxation modulus from dynamic data for linear viscoelastic materials. Rheol Acta 14:581–590. doi:10.​1007/​BF01520809 CrossRef
    Sim B, Choi HJ (2015) Facile synthesis of polyaniline nanotubes and their enhanced stimuli-response under electric fields. RSC Adv 5:11905–11912. doi:10.​1039/​C4RA13635G CrossRef
    Stanway R, Sproston JL, El-Wahed AK (1996) Applications of electro-rheological fluids in vibration control: a survey. Smart Mater Struct 5:464. doi:10.​1088/​0964-1726/​5/​4/​011 CrossRef
    Sumita G, Tiago B, Sergej F, Maria TC (2014) Electrorheological properties of polyaniline-vanadium oxide nanostructures suspended in silicone oil. Smart Mater Struct 23:105012. doi:10.​1088/​0964-1726/​23/​10/​105012 CrossRef
    Sung JH, Choi HJ, Sohn JI, Jhon MS (2003) Electrorheology of chitosan polysaccharide suspensions in soybean oil. Colloid Polym Sci 281:1196–1200. doi:10.​1007/​s00396-003-0909-y CrossRef
    Tan KP, Johnson AR, Stanway R, Bullough WA (2007) Model validation of the output reciprocating dynamic responses of a twin electro-rheological (ER) clutch mechanism. Mech Mach Theory 42:1547–1562. doi:10.​1016/​j.​mechmachtheory.​2006.​12.​005 CrossRef
    Tang LG, Hon DNS, Pan SH, Zhu YQ, Wang Z, Wang ZZ (1996) Evaluation of microcrystalline cellulose. I. Changes in ultrastructural characteristics during preliminary acid hydrolysis. J Appl Polym Sci 59:483–488. doi:10.​1002/​(SICI)1097-4628(19960118)59:​3<483:​AID-APP13>3.​0.​CO;2-V CrossRef
    Tilki T, Yavuz M, Karabacak C, Mehmet C, Mehmet U (2010) Investigation of electrorheological properties of biodegradable modified cellulose/corn oil suspensions. Carbohydr Res 345:672–679. doi:10.​1016/​j.​carres.​2009.​12.​025 CrossRef
    Tobyn MJ, MCCarthy GP, Staniforth JN, Edge S (1998) Physiochemical comparison between microcrystalline cellulose and silicified microcrystalline cellulose. Int J Pharm 169:183–194. doi:10.​1016/​S0378-5173(98)00127-6 CrossRef
    Yang M, Scriven LE, Macosko CW (1986) Some rheological measurements on magnetic iron oxide suspensions in silicone oil. J Rheol 30:1015–1029. doi:10.​1122/​1.​549892 CrossRef
    Yatsuzuka K, Miura K, Kuramoto N, Asano K (1995) Observation of the electrorheological effect of silicone oil/polymer particles suspension. IEEE Trans Ind Appl 31:457–463. doi:10.​1109/​28.​382103 CrossRef
    Yilmaz H, Zengin H, Unal HI (2012) Synthesis and electrorheological properties of polyaniline/silicon dioxide composites. J Mater Sci 47:5276–5286. doi:10.​1007/​s10853-012-6413-3 CrossRef
    Yin J, Zhao X (2011) Electrorheology of nanofiber suspensions. Nanoscale Res Lett 6:256–272. doi:10.​1186/​1556-276X-6-256 CrossRef
    Yin J, Xia XX, Xiang L, Qiao Y, Zhao X (2009) The electrorheological effect of polyaniline nanofiber, nanoparticle and microparticle suspensions. Smart Mater Struct 18:095007. doi:10.​1088/​0964-1726/​18/​9/​095007 CrossRef
    Zhang YP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulose system. Biotechnol Bioeng 88:797–824. doi:10.​1002/​bit.​20282 CrossRef
    Zhang S, Winter W, Stipanovic A (2005) Water-activated cellulose-based electrorheological fluids. Cellulose 12:135–144. doi:10.​1007/​s10570-004-0345-2 CrossRef
    Zhang K, Liu YD, Choi HJ (2012) Carbon nanotube coated snowman-like particles and their electro-responsive characteristics. Chem Commun 48:136–138. doi:10.​1039/​c1cc16140g CrossRef
    Zhang WL, Piao SH, Choi HJ (2013) Facile and fast synthesis of polyaniline-coated poly(glycidyl methacrylate) core-shell microspheres and their electro-responsive characteristics. J Colloid Interface Sci 402:100–106. doi:10.​1016/​j.​jcis.​2013.​04.​011 CrossRef
  • 作者单位:Bomi Sim (1)
    Dong Hun Bae (1)
    Hyoung Jin Choi (1)
    Kisuk Choi (2)
    Md. Sakinul Islam (2)
    Nhol Kao (2)

    1. Department of Polymer Science and Engineering, Inha University, Incheon, 402-751, Korea
    2. School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne, VIC, 3000, Australia
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Bioorganic Chemistry
    Physical Chemistry
    Organic Chemistry
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-882X
文摘
We report on the electro-responsive electrorheological (ER) properties of microcrystalline cellulose (MCC) particles. It was synthesized from raw rice husk (Downes Rice) through the 3-step preparation of alkali treatment, bleaching, and hydrolysis. The MCC particles with mean particle size about 26 μm were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and thermal gravimetric analysis. The MCC particles were then dispersed in silicone oil to create an ER fluid; its dramatic electro-responsive phase changes under an applied electric field were observed by an optical microscopy. The effect of electric field strengths on ER performances of the ER fluid were determined using a rotational rheometer equipped with a high-voltage generator from the controlled shear rate mode and dynamic oscillation measurements. The fluid showed typical ER effects of Bingham fluid behavior with yield stress and viscoelastic properties under an applied electric field. Keywords Electrorheology Microcrystalline cellulose Rice husk Suspension

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700